A Survey on EEG Signal Analysis Using Machine Learning

Authors

  • Sajjad A. Mohammed Department of Biomedical Engineering, College of Engineering, University of Thi-Qar, Thi-Qar, Iraq
  • Sura S. Jasim Department of Biomedical Engineering, College of Engineering, University of Thi-Qar, Thi-Qar, Iraq
  • Baneen A. Thamir Department of Biomedical Engineering, College of Engineering, University of Thi-Qar, Thi-Qar, Iraq
  • Ahmed A. Alabdel Abass Department of Electrical Engineering and Electronics, College of Engineering, University of Thi-Qar, Thi-Qar, Iraq https://orcid.org/0000-0003-3591-776X

DOI:

https://doi.org/10.31663/utjes.15.1.686

Keywords:

Electroencephalogram, Machine learning, Convolutional Neural Networks, Transformer-Based Models, Recurrent Neural Networks, Hybrid Architectures

Abstract

Electroencephalogram (EEG) signals provide a window through which we can view brain activity, are of great importance for neurological diagnosis, developing Brain-Computer Interface (BCI), and cognitive neuroscience. Despite the importance of EEG data, they being complex and non-stationary make it difficult for analysis. With the development of machine learning (ML) and deep learning (DL) as state-of-the-art methods for decoding EEG signals, attempting to provide optimal performance in both accuracy and computational time costs when it comes to the problem of extreme complexity such as classification of huge dataset sizes. This paper presents a comprehensive review of the most recent ML and DL techniques in EEG signal analysis. We examine the latest methods — Convolutional Neural Networks (CNNs), Transformer models, Recurrent Neural Networks (RNNs), and both hybrid and traditional architectures with their individual undertakings in tasks of seizure detection, emotion classification, and motor imagery to evaluate each approach efficiency. Overall, the results validate the high transformative efficacy of ML and DL in the EEG signal domain which might provide a key towards optimizing our current knowledge of brain function, as well as serving to increase diagnostic accuracy in clinical environments.

References

Abdullah, O. A., Aal-Nouman, M. I., & AlJoudi, A. K. (2019). Compliance Framework for Seizure Detection via Gaussian Deep Boltzmann Machine Using EEG Data Signal. 019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia. https://doi.org/10.1109/csudet47057.2019.9214758

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2018). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 100, 270–278. https://doi.org/10.1016/j.compbiomed.2017.09.017

Alessandrini, M., Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., & Turchetti, C. (2022). EEG-Based Alzheimer’s disease recognition using Robust-PCA and LSTM Recurrent neural network. Sensors, 22(10), 3696. https://doi.org/10.3390/s22103696

Alessandrini, M., Biagetti, G., Crippa, P., Falaschetti, L., & Turchetti, C. (2021). Recurrent neural network for human activity recognition in embedded systems using PPG and accelerometer data. Electronics, 10(14), 1715. https://doi.org/10.3390/electronics10141715

AlShorman, O., Masadeh, M., Heyat, M. B. B., Akhtar, F., Almahasneh, H., Ashraf, G. M., & Alexiou, A. (2022). Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. Journal of Integrative Neuroscience, 21(1), 020. https://doi.org/10.31083/j.jin2101020

Angulo-Sherman, I. N., & Salazar-Varas, R. (2023). Recent applications of BCIs in healthcare. In Intelligent systems reference library (pp. 173–197). https://doi.org/10.1007/978-3-031-37306-0_9

Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1511.06448

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., & Gramfort, A. (2018). A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 758–769. https://doi.org/10.1109/tnsre.2018.2813138

Chowdary, M. K., Anitha, J., & Hemanth, D. J. (2022). Emotion Recognition from EEG Signals Using Recurrent Neural Networks. Electronics, 11(15), 2387. https://doi.org/10.3390/electronics11152387

Dose, H., Møller, J. S., Iversen, H. K., & Puthusserypady, S. (2018). An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Systems With Applications, 114, 532–542. https://doi.org/10.1016/j.eswa.2018.08.031

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. https://doi.org/10.1007/s10618-019-00619-1

Foroughi, A., Farokhi, F., Rahatabad, F. N., & Kashaninia, A. (2023). Deep convolutional architecture‐based hybrid learning for sleep arousal events detection through single‐lead EEG signals. Brain and Behavior, 13(6). https://doi.org/10.1002/brb3.3028

Golmohammadi, M., Torbati, A. H. H. N., De Diego, S. L., Obeid, I., & Picone, J. (2019). Automatic analysis of EEGs using big data and hybrid deep learning architectures. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00076

Hao, Y., Cao, H., Candan, K. S., Liu, J., Chen, H., & Ma, Z. (2022). Class-Specific Attention (CSA) for Time-Series classification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2211.10609

Hussein, R., Lee, S., & Ward, R. (2022). Multi-Channel Vision Transformer for Epileptic Seizure Prediction. Biomedicines, 10(7), 1551. https://doi.org/10.3390/biomedicines10071551

Jang, S., Moon, S., & Lee, J. (2023). EEG-Based Emotional Video Classification via Learning Connectivity Structure. IEEE Transactions on Affective Computing, 14(2), 1586–1597. https://doi.org/10.1109/taffc.2021.3126263

Jonas, S., Müller, M., Rossetti, A. O., Rüegg, S., Alvarez, V., Schindler, K., & Zubler, F. (2022). Diagnostic and prognostic EEG analysis of critically ill patients: A deep learning study. NeuroImage Clinical, 36, 103167. https://doi.org/10.1016/j.nicl.2022.103167

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5), 056013. https://doi.org/10.1088/1741-2552/aace8c

Lee, C., Kim, H., Han, H., Jung, M., Yoon, B. C., & Kim, D. (2024). NeuroNet: A novel hybrid Self-Supervised learning framework for sleep stage classification using Single-Channel EEG. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2404.17585

Liu, M., Ren, S., Ma, S., Jiao, J., Chen, Y., Wang, Z., & Song, W. (2021). Gated Transformer Networks for multivariate Time Series classification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2103.14438

Ma, Q., Wang, M., Hu, L., Zhang, L., & Hua, Z. (2021). A novel recurrent neural network to classify EEG signals for customers’ Decision-Making behavior prediction in brand extension scenario. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.610890

Pange, S. M., & Pawar, V. R. (2023). Deep Learning Based Depression Analysis using EEG and ECG Signals. International Journal of Electrical and Electronics Engineering, 10(7), 53–62. https://doi.org/10.14445/23488379/ijeee-v10i7p105

Potter, İ. Y., Zerveas, G., Eickhoff, C., & Duncan, D. (2022). Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG. In Proceedings - 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022. https://doi.org/10.1109/icmla55696.2022.00208

Raghu, S., Sriraam, N., Temel, Y., Rao, S. V., & Kubben, P. L. (2020). EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Networks, 124, 202–212. https://doi.org/10.1016/j.neunet.2020.01.017

Roy, S., Kiral-Kornek, I., & Harrer, S. (2019). ChronoNet: a Deep Recurrent neural network for abnormal EEG identification. In Lecture notes in computer science (pp. 47–56). https://doi.org/10.1007/978-3-030-21642-9_8

Savadkoohi, M., Oladunni, T., & Thompson, L. (2020). A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal. Journal of Applied Biomedicine, 40(3), 1328–1341. https://doi.org/10.1016/j.bbe.2020.07.004

Sharma, R., & Meena, H. K. (2024). Emerging trends in EEG Signal Processing: A Systematic review. SN Computer Science, 5(4). https://doi.org/10.1007/s42979-024-02773-w

Sherman, D. L., & Thakor, N. V. (2020). EEG Signal Processing: theory and applications. In Springer eBooks (pp. 97–129). https://doi.org/10.1007/978-3-030-43395-6_3

Shoka, A. a. E., Dessouky, M. M., El-Sayed, A., & Hemdan, E. E. (2023). An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications. Alexandria Engineering Journal, 65, 399–412. https://doi.org/10.1016/j.aej.2022.10.014

Shoorangiz, R., Weddell, S. J., & Jones, R. D. (2021). EEG-Based Machine Learning: Theory and Applications. In Springer eBooks (pp. 1–39). https://doi.org/10.1007/978-981-15-2848-4_70-1

Siuly, S., Guo, Y., Alcin, O. F., Li, Y., Wen, P., & Wang, H. (2023). Exploring deep residual network based features for automatic schizophrenia detection from EEG. Physical and Engineering Sciences in Medicine, 46(2), 561–574. https://doi.org/10.1007/s13246-023-01225-8

Siuly, S., Li, Y., & Zhang, Y. (2016). Significance of EEG signals in medical and health research. In Health information science (pp. 23–41). https://doi.org/10.1007/978-3-319-47653-7_2

Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep Learning Human Mind for Automated Visual Classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6809-6817). https://doi.org/10.1109/cvpr.2017.479

Varalakshmi, P., V, R., C, C. S., & R, A. V. (2021). EEG Signal Based Epileptic Seizure Forecasting Using Deep Learning Models. In 2021 Sixth International Conference on Wireless Communications, Signal Processing and Data. Electronics. https://doi.org/10.1109/wispnet51692.2021.9419411

Vinay, A., Lerch, A., & Leslie, G. (2021). Mind the Beat: Detecting Audio Onsets from EEG Recordings of Music Listening. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/icassp39728.2021.9414245

Xin, Q., Hu, S., Liu, S., Zhao, L., & Zhang, Y. (2022). An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 957–966. https://doi.org/10.1109/tnsre.2022.3166181

Xu, G., Ren, T., Chen, Y., & Che, W. (2020). A One-Dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.578126

Yan, J., Li, J., Xu, H., Yu, Y., & Xu, T. (2022). Seizure prediction based on transformer using scalp electroencephalogram. Applied Sciences, 12(9), 4158. https://doi.org/10.3390/app12094158

Ying, M., Shao, X., Zhu, J., Zhao, Q., Li, X., & Hu, B. (2024). EDT: An EEG-based attention model for feature learning and depression recognition. Biomedical Signal Processing and Control, 93, 106182. https://doi.org/10.1016/j.bspc.2024.106182

Yogarajan, G., Alsubaie, N., Rajasekaran, G., Revathi, T., Alqahtani, M. S., Abbas, M., Alshahrani, M. M., & Soufiene, B. O. (2023). EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44318-w

Zhang, H., Zhou, Q., Chen, H., Hu, X., Li, W., Bai, Y., Han, J., Wang, Y., Liang, Z., Chen, D., Cong, F., Yan, J., & Li, X. (2023). The applied principles of EEG analysis methods in neuroscience and clinical neurology. Military Medical Research, 10(1). https://doi.org/10.1186/s40779-023-00502-7

Zhou, S., & Pan, Y. (2021). Spectrum Attention Mechanism for Time series Classification. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). https://doi.org/10.1109/ddcls52934.2021.9455697

Downloads

Published

2025-06-01

How to Cite

A Survey on EEG Signal Analysis Using Machine Learning. (2025). University of Thi-Qar Journal for Engineering Sciences, 15(1), 89-106. https://doi.org/10.31663/utjes.15.1.686

Similar Articles

11-20 of 129

You may also start an advanced similarity search for this article.