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ABSTRACT

A finite rectangular plate with double edge crack under uniaxial tension depends on the
assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain problem are studied
in the present paper. The effect of crack position, crack oblique and the kinked crack
orientation are investigated to predict if a crack starts to grow. These problems are solved by
calculating the Stress Intensity Factor SIF for mode | (KI) and Il (KII) near the crack tip
theoretically using mathematical equations and numerically using finite element software
ANSYS R15. A good agreement is observed between the theoretical and numerical solutions.
The results show that the KI increases with increasing the relative crack length and tensile
stress and these values are increased when the crack position draws near the plate edge while
in case of parallel cracks the mutual shielding effect reduces Kl in each crack. In mixed mode,
it is shown that the maximum values of Kl and KIlI occur at crack angle p=0° and 45°,
respectively and the orientation of the kinked crack have significant effects on the Kl and KIlI.
Key Words: Double edge crack, SIF, crack oblique, ANSYS R15, kinked.
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1. INTRODUCTION

Recent development in engineering structures shows that small cracks in the body of
structures can cause a failure despite of the authenticity of elasticity theory and strength of
materials. As a result, fracture mechanics filed which is concerned with the propagation
of cracks in materials has developed to study more about this subject, Ali et al. [1]. The
crack may grow to cause structure failure due to low stress, which acts on a structure. Stress
Intensity Factor (SIF) is a most important single parameter in fracture mechanics, which can
be used to examine if a crack, would propagate in a cracked structure under particular loading
condition, i.e. it controls the stability of the crack, Saleh [2] .

No structure is entirely free of defects and even on a microscopic scale these defects act as
stress raisers which initiate the growth of cracks. The theory of fracture mechanics therefore
assumes the pre-existence of cracks and develops criteria for the catastrophic growth of these
cracks. In a stressed body, a crack can propagate in a combination of the three opening modes
that shown in Figure 1. Mode | represents opening in a purely tensile field while modes 11 and
I11 are in-plane and anti-plane shear modes respectively. The most commonly found failures
are due to cracks propagating predominantly in mode I, and for this reason materials are
generally characterized by their resistance to fracture in that mode, Arencon and Velasco [3].

The double — edge cracked plate is a common specimen in research and practice for
fracture mechanics. It has been studied by Bowie [4], who gave solutions for a circular hole
with a single edge crack and a pair of symmetrical edge cracks in a plate under tension by
using a conformal mapping technique, while Newman [5], using the boundary collocation
method, and Murakami [6], used the body force method to analyze the tension problem for an
elliptical hole with symmetrical edge cracks. Isida and Nakamura [7], made an analysis for a
slant crack emanating from an elliptical hole under uniaxial tension and shear at infinitity by
using the force body method.

Yavuz et al. [8] analyzed multiple interacting cracks in an infinite plate to determine the
overall stress field as well as SIF for crack tips and singular wedges at crack kinks. A
perturbation approach for the elasticT-stress at the tip of a slightly curved or kinked crack
based on used by Li et al. [9], while Saleh [2] analyzed and determined the KII of several
crack configurations in plates under uniaxial compression using a two-dimensional Finite
Element Method (FEM). Various cases including diagonal crack and central kinked crack are
investigated with different crack's length, orientation and location. Antunes et al. [10] studied
numerically the effect of crack propagation on crack tip fields. Spagnoli et al. [11] described
the influence of the degree of crack deflection on the fatigue behavior and Ali et al. [1]

utilized the SIF to determine the stress intensity near the tip of a crack using FEM.
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Recentllty, Mohsin [12] studied the KI for center, single edge and double edge cracked finite
plate subjected to tension stress to investigate the differences between the theoretical and
numerical solutions.

Fracture mechanics is used to evaluate the strength of a structure or component in the
presence of a crack or flaw, Fatemi [13]. In 1938 Westergaard solved the stress field for an

infinitely sharp crack in an infinite plate (Figure 3). The elastic stresses were given by the
equations Rae [14]
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where Oj; is stress tensor, ris the distance from the crack tip, 0 is the angle with
respect to the plane of the crack, and fjare functions that are independent of the crack
geometry and loading conditions.

From Saouma [15]
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When 0 =0, we have from (1) to (7)
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Then, the K1 of a finite plate under tension load is
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Stress intensity solutions are given in a variety of forms, K can always be related to the
through crack through the appropriate correction factor, Anderson [16]
K(LILIID =Yoyma, .oooocvviin.. (13)

where a: characteristic crack dimension and Y: dimensionless constant that depends on the
geometry and the mode of loading.

When a body subjected to tension loading, the stress intensity factors for mode | and mode
I to any planar crack oriented 90° —  (Figure 4) from the applied normal stress (KIg and
Kllg) can be obtained depend on Sih et al. [17] as follow

Klg = KLecos®B..........coeeenn, (14)

Kllg = Kl.cosP.sinf, .............. (15)

where Kl is the mode I stress intensity when § = 0.

Supposing that the crack in question forms an infinitesimal kink at an angle o from the
plane of the crack, as Figure 5 illustrates. The local SIF at the tip of this kink differs from the
nominal K values of the main crack. If we define a local x-y coordinate system at the tip of
the kink , the local mode | and mode Il stress intensity factors at the tip are obtained by

summing the normal and shear stresses, respectively, at o, Anderson [16]:

KI, = Wu’% = [2 cos (‘} + = cr:rs{ )] Klg + [ : [sm (L) + sin (Ef}ﬂ Kl ...
(16)
KII, = Txyw“m = E [sm( } + sm( }H Kl + [1 COS ( } + —cos {3‘:)] Kl , ...

(17)
where Kl, and KlI, are the local SIF at the tip of the kink.
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Figure 1: Fracture modes [3]. Figure 2 Double edge

crack plate
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Figure 3: Crack with sharp edge [14] Figure 4: Through crack in an infinite
plate for the

general case where the principal
stress is

not perpendicular to the crack
plane[16].
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Figure 5: Infinitesimal kink at the tip of a macroscopic crack [16]

2. MATERIALS AND METHODS

Based on the assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain
problem, Double Edge Notch Tension (DENT) finite plate specimen as shown in Figure 2 is
studied using theoretical and numerical solutions.
2.1. SPECIMENS MATERIAL

The material of plate specimens is a Carbon Steel with modulus of elasticity =202 E-3
MN/m?, poison’s ratio = 0.292 and density = 7820 Kg/m®, Kulkarni [18].
2.2. SPECIMENS MODEL

To calculate the SIF in numerical and theoretical solutions, five models have been
selected as follows
I.  Double Edge Notch (DEN) is in the middle of the plate’s length (Figure 6a and b).
Il.  DEN is in the various positions along Y-axis (Figure 6d).
1. Two parallel DEN are in the various positions along Y-axis (Figure 6e).

IV.  DEN with crack orientation is in the middle of the plate’s length (Figure 6f).
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V. DEN with crack orientation and kinked is in the middle of the plate’s length
(Figure 69).
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Figure 6: ANSYS models with mesh and dimensions.
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2.3. THEORETICAL SOLUTION

For theoretical calculation, many researchers reported different equations for many
cases to evaluate the SIF for double edge cracks. In this paper, the SIFs are theoretically
calculated as follow : -

- Kl values for model I, 1l and 111 (i.e. DENT without orientation (B = 0)) are calculated based
on (13), where
a) From Nassar [19]

s61(5)-0.205(§)"+0.471(5)"~0.100(5)")
(1.122—&;51(&]—0.2&;{&) +0.471(3) -0.190(3

Y = b W W) (18)

b) From Tada et al. [20]

Y = (1—|—D.122cos“(£)) Zean(Z) (19)

T 2b

- Values of Klg and Kllg for model 1V (i.e. DENT with crack orientation) are calculated using
equations (14)

and (15), respectively.
- Values of Kl, and KiIl, for model V (i.e. DENT with crack kinked) are calculated using
equations (16) and

(17), respectively.

2.4. NUMERICAL SOLUTION

Numerically, all the five models ( as mensioned above ) are solved to calculate the SIFs
using finite element software ANSYS R15 with PLANE183 element as a discretization
element.

2.5. PLANE183 ELEMENT DESCRPTION

PLANE183 is an ANSYS element with quadrilateral and triangle shape, plane strain
behavior and pure displacement formulation. It is defined by 8 nodes ( I, J, K, L, M, N, O,
P ) for quadrilateral element or 6 nodes ( I, J, K, L, M, N) for triangle element, two
degrees of freedom (Ux , Uy) at each node (translations in the X and Y directions) [21].
The geometry, coordinate system and node locations for this element are shown in Figure
1.
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Figure 7: PLANE183 element geometry, coordinate system and node locations [21].

2.6. Applications

To explain the effect of the five cases that mention above on the SIFs, many cases are
studied theoretically and numerically as reported in Table 1.
Table 1: The cases studied with the parameters, solution types and number of figures.

No. of Changed Parameter in this .
Studied case study Other Type of Figure
Cases Parameters Solutions No.
Name WValues
0.110 0.6 Cr =200 Mpe Theoretical
/b with step 0.05 b= 350mm and Numerical 8
I i h=62.5mm
s SQ to 250Mpa E ; ggr;ﬁm Theoreticall °
with step 50Mpa | and Numerical
a=15mm
6, =200 Mpa
-50 to 50mm b = 50mm .
I z with step 5mm h=62.5mm Nomerical 10
a=15mm
20mm to E‘:_ggﬂpa
II1 s 100mm with step h=62 Smm Numerical 11
10mm _
a=15mm
S, =200 Mpa
IT and z -50 to S0mm b = 50mm Numerical 12
111 with step Smm h=62.5mm - -
a=15mm
S, =200 Mpa
v B -75°%t0 75° b = 50mm Theoretical 13 and
with step 5° h=62.5mm and Numerical 14
a=15mm
6, =200 Mpa
0°, 159, 30° b = 50mm
v (a+ B) 450, 60°65°, h=62.5mm Theoretical 15 and
700750, 80°85°, | a=10mm and Numerical 16
90¢° d=5mm
B=15°
©, =200 Mpa
b = 50mm
_ 0% 15°, 30° h=62.5mm
v (a*B) 45°, 60°65°5, a=10mm Numerical 17 and
70° 759, 80° 859, d=5 B 18
90° mm
B=(15°,45°.75°)
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3. RESULTS AND DISCUSSIONS

3.1. Effect of relative crack length and tensile stress on the Kl

Figures 8 and 9 explain the theoretical and numerical variation of KI for model | with
different values of relative crack length (a/b) and tensile stresses (oy), respectively. It can be
seen that increasing the ratio of a/b and o leads to increasing the value of K, in a high level.
From these figures, it is clear that there is no significant difference between the Theoretical
(Eq.18 and EQ.19) and numerical (Quarter and half model) results with a maximum

discrepancy of 0.79%.
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Figure 8: Theoretical and numerical Variation Figure 9: Theoretical and
numerical Variation
of Kl with (a/b) ratio. of KI with 6.

3.2. Effect of DENT position on the KI

The variation of KI for model 11 with different edge crack positions along Y-axis (z) are
shown in Figure 10. It can be seen that the KI values increases slightly fromz = 0to z =
+30mm, after that, KI values rises in a high level. Generally, maximum KI values appear at
when the crack near the plate edge while the minimum values occur when its position at the

middle of plate (i.e. z = 0).
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3500
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Stress Iutensity Factor KT (Mplnt)

-8 -4 -0 o 20 40 a0
Crack Distance ( z) (mm)

Figure 10: Variation of KI with crack distance (z).
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3.3. Effect of two parallel DENT position on the K

Figure 11 illustrates the variation of KI for model 111 with various two parallel edge crack
positions along Y-axis (s). From this figure, it can be seen that the KI values are increased
with increasing the distance between the two parallel cracks (s).

In the other hand, Figure 12 explains a comparison between the effect of one and two edge
crack positions along Y-axis on the Kl from z = -50mm to z = +50mm. It is clear that the Kl
values for model Il are greater than of model Il at z = 0, after that, the difference decreases
slightly from z=0 to z= £40mm and vanished when z>+40mm. Generally, In case of parallel
cracks, the crack tends to shield one another and this mutual shielding effect reduces KI in
each crack. The mutual shielding effect increase with decrease the distance between the two

parallel cracks.
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Figure 11: Variation of KI with the distance Figure 12: Variation of KI with crack
between two parallel cracks (5). distance for 1 and 2 cracks (2).
3.4. Effect the DENT inclination angle on the KI and Kl
The variation of KI and KII values with the double edge crack angle () for model IV
are shown in figures 13 and 14, respectively. From these figures, it is too easy to see that
the maximum Kl and KII occur at B = 0° and B = 45° respectively. Furthermore, Kl
gradually decreases when 0°> B > 0° while KII gradually decreases when 45° > >45°. In
addition, it is shown that a small difference between KI values in numerical and theoretical
solution but this difference will increase when calculate the Kl especially when 60°>
B>30° and -60° < B < -30°. It is clear that the crack angle has a considerable effect on the
Kl and KII values as a result of the shear stresses and normal stresses depend on the angle

values.
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Figure 13: Variation of KI with the crack Figure 14: Variation of KII with the crack
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3.5. Effect of the DENT inclination angle with kinked on the Kl and Klla

Figures 15 and 16 illustrate a compression between theoretical and numerical of Kl and
Klla values (Kla and Klla= Kl and KII at crack tip A, respectively as shown in Figure 69)
with variation of crack orientation plus kink angles ((a+f) = 0°, 15° 30° 45°, 60°, 75° 80°,
85° and 90°) at crack angle (B = 15°). From Figure 15 , it can be seen that there is a
considerable effect between two curves when o < 0° after that, the difference decreases
slightly and vanished at o > 60°. In the other hand, From Figure 16, it is clear that there in no
significant difference between theoretical and numerical values at 0<45°but the difference

slightly increase after this angle.
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- ——MNumerical =—l~Theoretical - —#—Numerical =—S—Theoretical
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-9 m, S00
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g 500 i

- e

= ¥ 100
S 400 =

% .

E 200 E 0
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0
0 15 30 45 80 75 S0

Crack erientation + Kink angle ([i%+a®)

-100 -
o 15 30 45 &0 75 S0
Crack orientation + Kink angle (*+a°)

Figure 15: Theoretical and numerical variation Figure 16: Theoretical and numerical variation
of KI with the (B°+a°) for (B°=15°). of KII with the(B%+a°) for (B°=15°).

Furthermore, the variation of Kl and Klla with the ((o+B) = 0°, 15°, 30°, 45°, 60°, 75°,
80°, 85° and 90°) at crack angles (B = 15°, 45° and 75°) are explained in the Figures 17 and
18, respectively. Figure 17 illustrates that the increasing in the angles  and (B+a) lead to

slightly decrease in the Kl values while, from figure 18, it can be seen that the increasing
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in the B lead to decrease in Klla values. In addition, Klla increases with the increase of
(B+a) angles until 60° and then it starts decreasing. Hence, maximum value of Kla and
Klla occur at when (B+a) = 0° and 60°, respectively. In fact, the mixed mode crack (crack
with mode | and Il) become a mode | crack only due to the crack tend to propagate

perpendicular to the applied normal stress.

1800 e 3=15 el [3=45 B=75 450 *ﬁ=1j +|3=45 |3=?S

-
S,
=

Stress Intensity Factor Kf (Mpvim)

Stress Intensity Factor Kif (Mpvim)

400

200 50
0 o B
o 15 E] 45 &0 75 op 105 o I5 30 45 = 75 @0 105
Crack orientation + Kink angle (5°+a?) Crack orientation + Kink angle (f°+u®)
Figure 17: Numerical variation of KI with Figure 18: Numerical variation of KII with
the (B°+0°) for different p°. the (B°+a°) for different p°.

Furthermore, Figures 19 and 20 are graphically illustrated VVon-Mises stresses countor
plots with the variation of the locations and angle of the crack. Figures 19a, b, ¢, d, and e
explain the variation of Von-Mises stresses for DENT in the middle of the plate length,
near the plate edge, parallel cracks, with angle and with kinked, respectively while the
variation of Von-Mises stresses with different values of crack and kinked angles are
illustrate in the Figures 20a, b, ¢, d and e. From these figures, it is clear that all cases

mentioned above have a considerable effect on the plate stresses.
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(d)
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Figure 19: Countor plots of Von-Mises stress with the variation for double edge crack for
different cases.
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Figure 20: Countor plots of Von-Mises stress for different double edge crack orientations
and kink angles.
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4. CONCLUSIONS

(62}

The following conclusion can be drawn from the present study:

1- In all studied cases, a good agreement is observed between the theoretical and
numerical results with a maximum discrepancy of 0.79%.

2- Kl increases with increasing the relative crack length and tensile stress and when the
crack position draw near the plate edge but this value decreased in the case of two
parallel cracks as a result of the mutual shielding effect KI reduces in each crack.

3- The maximum values of KI and KII occur at crack angle p=0° and 45°, respectively. In
addition, KII vanished at B = 0° and 90° while KI vanished at p = 90°.

4- In kinked crack case, the maximum value of Kl and Klla occur at (B+o) = 0° and 60°,
respectively. It was seen that the orientation of the kinked crack have a significant
effects on the Kl and KIlI.
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