

53

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Designing of Soft Core Processor System with Direct Memory

Access (DMA) Mode

Mazin Rejab Khalil Rafal Taha Mahmood

Basrah University. College of Engineering

E-mail: mazin_r_khalil@yahoo.com E-mail: rafal_1985_r@yahoo.com

Abstract

A soft core processor system is constructed using embedded design techniques

and it is configured on Field Programmable Gate Arrays (FPGAs). The system is

accommodated to act with Direct Memory Access (DMA) mode using suitable Xilinx

Intellectual Property (IP) core. A dual data rate synchronous dynamic random access memory

(DDR_SDRAM) with 64 Mbyte capacity is introduced to the system and accessed by the

DMA controller. The controller is performed to transfer programmable quantity of data from

source address to destination address without intervention of the processor.

Spartan-3E slice is used and programmed using Xilinx Platform Studio (XPS)

which is provided by Xilinx integrated software environment at (ISE 10.1). The system

performance is tested by transferring data from matlab media to the DDR_SDRAM and vice-

versa, mat lab 2012a version software is used for this type of data transfer.

 رص١ُّ ٔظبَ اٌّؼبٌح اٌّصغش راد إٌٛاح اٌّجشِدخ ثزم١ٕخ اٌٛصٛي اٌّجبشش ٌٍزاوشح

سفً غٗ ِحّٛد ِبصْ سخت خ١ًٍ

 اٌّسزخٍص :

ثبعزخذاَ رم١ٕبد الأظّخ اٌّطّٛسح ١ٌٕفز ػٍٝ اٌجٛاثبد إٌّطم١خ راد ٔٛاح ِجشِغخِؼبٌظ ٔظبَ رص١ُّرُ

اٌمبثٍخ ٌٍجشِغخ اٌؾم١ٍخ ٚثٕظبَ اٌٛصٛي اٌؼشٛائٟ ٌٍزاوشح . رُ سثػ راوشح ٌٍٛصٛي اٌؼشٛائٟ ٔٛع

DDR_SDRAM ١ِىب ثب٠ذ ثٕظبَ اٌّؼبٌظ اٌّصغش ٌغشض اعزخذاِٙب فٟ ٔظبَ اٌٛصٛي 31ثغؼخ

طش ػٍٝ اٌزاوشح ثشىً ٔٛاح لبثٍخ ٌٍجشِغخ ٌزّى١ٓ إٌظبَ ِٓ اٌؼًّ ثطش٠مخ ٚرُ اظبفخ ِغ١ DMAاٌّجبشش

اٌٛصٛي اٌّجبشش ٌٍزاوشح ٚرٌه ٌٕمً اٌج١بٔبد ث١ٓ اٌزاوشح)وّصذس(ٚالأعٙضح اٌّؾ١طخ)وٙذف(ٌٍٛصٛي

اٌصبدسح ِٓ ششوخ ISE10.1ٚثشِغزٙب ثبعزخذاَ ث١ئخ Spartan_3eرُ اعزخذاَ شش٠ؾخ ٚثبٌؼىظ .

Xilinx ٚرُ اخزجبس أداء إٌظبَ ثبعزخذاَ ث١ئخmatlab ٌٕمً اٌج١بٔبد ث١ٓ اٌزاوشح ٚث١ئخ 2352اصذاس

matlab ٚثبٌؼىظ ثطش٠مخ اٌٛصٛي اٌّجبشش ٌٍزاوشح.

54

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

1. Introduction

Direct memory access (DMA) system is used usually to transfer certain quantity

of data between source and destination address without processor intervention.

 In [1] a DMA controller is designed to act with Micro blaze processor system

configured on Spartan-3A FPGAs. The system is designed to perform data transfer between

the internal block RAM and external peripheral.

 In [2] a DMA system is depicted to act with multiprocessor connected via On-chip

Processer Bus (OPB).

 In [3] a DMA mode is proposed to act as a universal synchronous/ a synchronous

Receiver/Transmitter (USART) IP soft core in Altera kit with AVALON bus.

 In this work a DDR-SDRAM external memory is used instead of the limited

capacity internal block RAM with newest version of Processor Local Bus (PLB v4.6). A

communication interaction between a matlab media and the designed soft core processor

system is suggested to transfer data between them according to DMA techniques.

 DMA is a feature of modern computers that allows certain hardware subsystems

within the computer to access system memory for reading and/or writing independently of the

central processing unit. Computers that have DMA channels can transfer data to and from

devices with much less CPU overhead than computers without a DMA channel [3].

 The processing unit which controls the DMA process is known as DMA

controller. Typically the job of the DMA controller is to setup a connection between the

memory unit and the I/O device; the data can be transferred with much less processor

overhead. Figure (1) shows the block diagram of DMA operation. When an interrupt signal is

activated, the processer goes to idle case and open circuit its connection with buses. The buses

become under the control of the DMA controller[4].

The XPS Central DMA Controller operates on the PLB using independent master

and slave interfaces. It responds as a slave when its registers are being read and written. It

initiates read and write transactions as a master when a DMA operation is in progress. The

master and slave connections of the XPS Central DMA operate as 32-bit PLB agents.

However, either the master or slave can connect to a PLB with wider data paths (64-bit or

128-bit) and conduct transactions with wider slaves or masters[5].

 DMA Operation forwards fast data transfer between source and destination

compared with data transfer with processor intervention.

Figure (2) shows the block diagram of the DMA controller core [5].

55

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Figure 1: Operation of a DMA Controller [4]

Figure (2): The Block Diagram of the DMA Controller Core

The core is composed of three modules; slave attachment module, master attachment

module and memory buffer.

In the slave attachment module the DMA responds to PLB transactions to read and

write the DMA registers to modify source address, destination address, length of data, DMA

status and interrupt status when DMA operation proceeds. These modifications are performed

Memory

DMA request

 CPU I/O

.

.

Device
controller

11110101

00000000

Disk
drive

Address Bus

DMA

controller

Data Bus

C
o
n

tr
o
l

b
u

s

Master
Module

Slave Module
RST

DMACR

SA

DA

LENGTH

DMASR

ISR

IER

PLB

interfac

e

module

PLB v4.6

PLB

master

interface

PLB

slave

interfac

e

IP2INTC_lrpt

FIF

O

R
ea

d
/W

ri
te

 E
n

a
b

le

DRE

56

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

by using the Source Address register (SA), the Destination Address register (DA), the Length

Register (LR), the DMA Status Register (DMASR), the Interrupt Status Register (ISR), the

Interrupt Enable Register (IER) and DMA Control Register (DMACR).

In the master attachment module, the DMA performs read and write transactions as a

PLB master to transfer the amount of data specified in the length register from source address

to destination address with updating the source, destination, length and status registers during

the DMA transfer. The memory buffer is 16*32 internal data buffer that is used to support

PLB burst transfer to speed up the DMA operation [5].

The suggested procedure in this work starts by constructing the embedded processor

system, introducing the DMA controller to the system and programming the resultant

hardware using C-language to accommodate the system to operate in DMA mode. The system

is tested to verify its functionality by transferring data between matlab media and the designed

processor system; the results are displayed at Hyper Terminal media and real time chip scope

window.

2. System Design

The system under consideration is designed using three stages. In the first stage the hardware

part of the soft processor system is constructed. While in the second stage a DMA controller

core is added to the system. Finally in the third stage the resultant system is programmed by

C-language to operate in a DMA mode.

3. Soft Core Processor System Design

Using embedded design techniques [6], a soft core processor system as shown in Figure (3) is

designed using the platform studio provided by Xilinx ISE (10.1) software. Figure (3-a)

shows the block diagram of the hardware part , Figure (3-b) exhibits the assembly view and

Figure (3-c) displays the address map of the system .

57

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

a

b

58

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

c

Figure (3): The Hardware Part of Designed Soft Core Processor System

a. The block diagram of the system.

b. The assembly view of the system.

c. The address map of the system.

4. Adding DMA Controller

The platform studio provides an environment in which an available IP cores can

be accessed. The DMA controller core is available in the form IP module that can be dragged

from the IP catalogue to the system assembly view. The following steps are adopted to

perform successful DMA introduction to the system:

1. Using bus interface window the DMA core is connected to the PLB in the slave and

master module and the core parameters are customized to adapt with the processor

system.

2. Using the port window the interrupt port of the controller is connected to the interrupt

port of the processor.

3. Using the address window, the address map of the system is reconfigured to take the

DMA controller into consideration.

59

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

4. The resulting hardware part of the system is shown in Figure (4). Figure (4-a) shows the

assembly view of the system with DMA core, Figure (4-b) shows the address map of the

system with DMA core.

a

b

Figure (4): The hardware part of designed soft core when adding DMA core.

a. The assembly view of the system.

b. The address map of the system.

60

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

5. Programming the system

The C -language is used to program the resultant system hardware to operate in

DMA mode, Figure (5) shows the flow chart of the prepared program. Application Peripheral

Interfaces (API) are used to make the hardware peripheral be sensed by the C –language

compiler. The APIs are software drivers constructed in the form of C -language functions.

The following APIs are used in the prepared program.

#define XDmaCentral_mWriteReg(BaseAddress, RegOffset, Data)

Where:

Base address: represents the base address of the DMA controller.

Offset address: the offset address of each register in the controller. The offset address of each

register is shown in Table [1].

Data: the data request to program the register.

Table (1): XPS Central DMA Controller Registers [4]

Register Name
Base Address+

Offset(hex)

Default

Value(hex)
Access

Software Reset Register (RST) C_BASEADDR + 0 NA Write

DMA Control Register

(DMACR)

C_BASEADDR + 4 80000004 R/W

Source Address (SA) C_BASEADDR + 8 00000000 R/W

Destination Address (DA) C_BASEADDR +C 00000000 R/W

Length (LENGTH) C_BASEADDR + 10 00000000 R/W

DMA Status Register

(DMASR)

C_BASEADDR + 14 00000000 Read

Interrupt Status Register (ISR) C_BASEADDR + 2C 00000000 Read/TOW

Interrupt Enable Register (IER) C_BASEADDR + 30 00000000 R/W

file:///C:/Users/HP/AppData/Local/Temp/Rar$DI00.363/xdmacentral__l_8h.html%23a24

61

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Figure (5): The flow chart of designed system programing

Include Files : xparameter.h , xstatus.h ,

xdmacentral.h

Define :

DMA central base address 0x80200000

Buffer size 95

Xuint32 SrcBuffer[buffer_size]

Xuint32 DestBuffer[buffer_size]

Xuint8 *SrcPointer

Xuint8*DestPointer

Start

Initialize DMA device

Program the control register DMACR to

increment source and destination addresses

Disable all interrupts

Program source and destination registers with

corresponding addresses

Transmit data from Mat lab media

Start DMA operation to transfer data from source

to destination buffers

Check the states register to conform transfer

achievement

Check the destination buffer contents

End

62

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

6. Results

Figure (6) shows the data read from destination buffer and the data transferred from the

source buffer displayed in hyper terminal window.

Figure (6): The Data Transfer from Source to Destination Buffer

63

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Figure (7) shows the operation of data transfer displayed on chip scope window during write

data bus cycle. Figure (7-a) presents the data flow with address during write bus cycle, Figure

(7-b) presents the data flow with address during write bus cycle zoomed out.

a

b

Figure (7): Data transfer based on DMA operation displayed on chip scope window

a- data flow with address during write bus cycle

b- data flow during write bus cycle zoomed out

64

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

7. Conclusions

A soft core processor system is designed using embedded design techniques and

configured on FPGA slice. The system is accommodated to act in DMA mode to transfer data

from a peripheral to external DDR-SDRAM memory by adding a DMA IP core to the system

and programming the resultant hardware using C-language with suitable API. The transferred

data width is 32-bit which is adaptable the PLB data width. The system can operate with

(40K) internal Block RAM and external (64M byte) DDR-SDRAM. The designed system can

be used efficiently with video graphic arrays (VGA) to display graphics on a screen since the

speed of data transfer between memory and the VGA controller is sufficient to capture all the

pixels of the image frame(640columns x 480 rows) in 60 screen/second display mode, this

rate of data flow could not be attained with processor systems without DMA operation mode.

References:

1- Bakshi A. B., Burman A. B., & Chakraborty A. Ch. , 2014 , "Development of DMA

Controller for Real Time Data Processing in FPGA Based Embedded Application", IOSR

Journal of VLSI and Signal Processing (IOSR-JVSP) . E-ISSN: 2319-4200, P-ISSN No.:

2319-4197, www.iosrjournals.org, PP 01-08 .

2- Tumeo A. T., Monchiero M. M., Palermo G. P., Ferrandi F. F. & Sciuto D. S., 2008,

"Lightweight DMA Management Mechanisms for Multiprocessors on FPGA", 1-4244-

1998 IEEE .

3- Allam P. A., 2013, "Design And Implementation Of USART IP Soft Core Based On

DMA Mode", International Journal of Computer Trends and Technology (IJCTT),

ISSN:2231-2803, http://www.ijcttjourmal.org, page no.:3580-3584.

4- http://www.talktoanit.com/A+/aplus-website/lessons-io-principles.html

5- XILINX, 2010, "LogiCORE IP XPS Central DMA Controller (v2.03a)" , Web Site:

www.xilinx.com, DS579.

6- Schmidt A. G., 2010, "Embedded Systems Design with Platform FPGAs",

TK7895.E42S27 2010, diacriTech, India, Web Site: www.elsevter.com/permissions.

http://www.iosrjournals.org/
http://www.ijcttjourmal.org/
http://www.xilinx.com/
http://www.elsevter.com/permissions

