Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Designing of Soft Core Processor System with Direct Memory

Access (DMA) Mode
Mazin Rejab Khalil Rafal Taha Mahmood

Basrah University. College of Engineering

E-mail: mazin_r_khalil@yahoo.com E-mail:_rafal 1985 r@yahoo.com

Abstract

A soft core processor system is constructed using embedded design techniques
and it is configured on Field Programmable Gate Arrays (FPGAS). The system is
accommodated to act with Direct Memory Access (DMA) mode using suitable Xilinx
Intellectual Property (IP) core. A dual data rate synchronous dynamic random access memory
(DDR_SDRAM) with 64 Mbyte capacity is introduced to the system and accessed by the
DMA controller. The controller is performed to transfer programmable quantity of data from
source address to destination address without intervention of the processor.

Spartan-3E slice is used and programmed using Xilinx Platform Studio (XPS)
which is provided by Xilinx integrated software environment at (ISE 10.1). The system
performance is tested by transferring data from matlab media to the DDR_SDRAM and vice-
versa, mat lab 2012a version software is used for this type of data transfer.

BSIAN dilal) J gaa o) Ay Ao suall 31 gil) 13 asall gellaal) aUS avaal
2gana ada J8 Jeld @y ke

: paldiuall

dgihiall Al gl e 2315) galaal) adail) Culiidh aladinly Aas e 3165 DI mllas alal arenal &
g5 Plsdiadl Joasll 3,813 Loy o5 5 SIA Al sdall Jseasll Uiy dliall dajll 414G
dsasll s (8 Lealadinl o pd jreadl el oy <l S ¢ 420 DDR_SDRAM
4y yhay Jaall (e alill (Sail dae pll AL 31 53 JSG0 3 S e Hlass 48l &5 5 DMA bl
J sl (o) ddapall 3 361y (LaaaS) 3 SIAN bl Jaal elld 5 SIA Silall J s)
A8l (e Bo3ball ISEL0.1 4y aladinly Leiae s Spartan_3e dsg s aladiu) o3 | GaSallys
Ay 3 SIA bl J&d YOV laal matlab dan alasiuly aUaill elol Ll &5 Xilinx
B SIA bl s ll 48y jhay (uSally s matlab

53

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

1. Introduction

Direct memory access (DMA) system is used usually to transfer certain quantity
of data between source and destination address without processor intervention.

In [1] a DMA controller is designed to act with Micro blaze processor system
configured on Spartan-3A FPGAs. The system is designed to perform data transfer between
the internal block RAM and external peripheral.

In [2] a DMA system is depicted to act with multiprocessor connected via On-chip
Processer Bus (OPB).

In [3] a DMA mode is proposed to act as a universal synchronous/ a synchronous
Receiver/Transmitter (USART) IP soft core in Altera kit with AVALON bus.

In this work a DDR-SDRAM external memory is used instead of the limited
capacity internal block RAM with newest version of Processor Local Bus (PLB v4.6). A
communication interaction between a matlab media and the designed soft core processor
system is suggested to transfer data between them according to DMA techniques.

DMA is a feature of modern computers that allows certain hardware subsystems
within the computer to access system memory for reading and/or writing independently of the
central processing unit. Computers that have DMA channels can transfer data to and from
devices with much less CPU overhead than computers without a DMA channel [3].

The processing unit which controls the DMA process is known as DMA
controller. Typically the job of the DMA controller is to setup a connection between the
memory unit and the I/O device; the data can be transferred with much less processor
overhead. Figure (1) shows the block diagram of DMA operation. When an interrupt signal is
activated, the processer goes to idle case and open circuit its connection with buses. The buses
become under the control of the DMA controller[4].

The XPS Central DMA Controller operates on the PLB using independent master
and slave interfaces. It responds as a slave when its registers are being read and written. It
initiates read and write transactions as a master when a DMA operation is in progress. The
master and slave connections of the XPS Central DMA operate as 32-bit PLB agents.
However, either the master or slave can connect to a PLB with wider data paths (64-bit or
128-bit) and conduct transactions with wider slaves or masters[5].

DMA Operation forwards fast data transfer between source and destination
compared with data transfer with processor intervention.

Figure (2) shows the block diagram of the DMA controller core [5].

54

Thi_Qar University Journal for Engineering Sciences, VVol.6, No. 2 _

|
BRI

Dime

—X_

Figure 1: Operation of a DMA Controller [4]

DMA request

»
L4

—+X

Control bL S

' PLB v4. 6 '
l PLB PLB /I
master slave
interface interfac

iﬁ

IP2INTC_lrpt

Read/Write Enable

&
<«

L

A 4

Figure (2): The Block Diagram of the DMA Controller Core
The core is composed of three modules; slave attachment module, master attachment

module and memory buffer.

In the slave attachment module the DMA responds to PLB transactions to read and
write the DMA registers to modify source address, destination address, length of data, DMA
status and interrupt status when DMA operation proceeds. These modifications are performed

55

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

by using the Source Address register (SA), the Destination Address register (DA), the Length
Register (LR), the DMA Status Register (DMASR), the Interrupt Status Register (ISR), the
Interrupt Enable Register (IER) and DMA Control Register (DMACR).

In the master attachment module, the DMA performs read and write transactions as a
PLB master to transfer the amount of data specified in the length register from source address
to destination address with updating the source, destination, length and status registers during
the DMA transfer. The memory buffer is 16*32 internal data buffer that is used to support
PLB burst transfer to speed up the DMA operation [5].

The suggested procedure in this work starts by constructing the embedded processor
system, introducing the DMA controller to the system and programming the resultant
hardware using C-language to accommodate the system to operate in DMA mode. The system
is tested to verify its functionality by transferring data between matlab media and the designed
processor system; the results are displayed at Hyper Terminal media and real time chip scope

window.

2. System Design

The system under consideration is designed using three stages. In the first stage the hardware
part of the soft processor system is constructed. While in the second stage a DMA controller
core is added to the system. Finally in the third stage the resultant system is programmed by
C-language to operate in a DMA mode.

3. Soft Core Processor System Design

Using embedded design techniques [6], a soft core processor system as shown in Figure (3) is
designed using the platform studio provided by Xilinx ISE (10.1) software. Figure (3-a)
shows the block diagram of the hardware part , Figure (3-b) exhibits the assembly view and

Figure (3-c) displays the address map of the system .

56

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2

Bram-block

N -
—>0 BN ES-

b _beam if_cothe dnb_bram ¥_cntlr
dlmd s ciad cwtin

MB-LMB

quip
quyy

PROCESSOR

chipscope
Dram Bk
b hram uf eniln) _Ddes
Mo ANt ae

e paset de i

S —

MB-PLB

» v
T MPMC XPS$-gpio XPS-gpio
; DDR-SDRAM DIP-switches LEDS
[Py = ———————
xps-uartlite xpsuartlite xps-timer xps-intc
RS232-DCE RS232-DTE Timer Intc ‘
a

» Xilinx Platform Studio - C:/profgeneral/system.xmp - [System Assembly View1]

File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help

IDAEHLR DR e RRNRBEORERD DA NGB IEXIBRIE

P L i3 Addresses |
: e g ®J Bus Interfaces | Ports H Addresses ‘
Project | Applications | IP Catalog | E B Bus Connection IP Version
Software Projects b 0.2
- [c]Add Software Application Project... 1.00.a
m'Defaull: microblaze_0_bootloop e 2 1 '?'? a
Default: microblaze_0_smdstub o = litea
g %Plo'ecl' TestA = ;llemOI O—FK | @ > dinb_enil Imb_bram_if_cntk 2.10.a
b RIECY TSt Ps ¥ @ D imb_cnth Imb_bram_if_cnth 2.10.a
Processor: microblaze_0 i : Mome 4003
Executable: C:\pro\general\Testdpp_t e = “: _“t'”_m i ontr 1 o j
(#- Compiler Options N DAY, 2 »ps_bram_if_cntl 00.a
Sources (=3 [+ < imb_bram bram_block 1.00.a
Uead e [>—{> <> xps bram i bram_block 1.00.a
i e.? 2 i @ P debug_module rdm 1.00.b
E'mPlolecl: TestApp_Peripheral @ D0 1.00.3
Processor: microblaze_0 L | BP5 1 th a
- Executable: C:\pro‘general\Testapp_F 5 >4) 1 UF:I -
& Compiler Options <P clock_genesator O clock_generator 2.00.a
¥ Sources P proc_sys seset O proc_sys_reset 2.00.a
. [# Headers
E-mPloiecl: test_z
[#- Processor: microblaze_0
- Executable: C:\protgeneralitest_z\exe
Compiler Options
Sources
Headers i
o M E L i O B | &
< il | > ‘ [Platform Studio] | System Assembly View J Block Diagram

b

57

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

eral/system.xmp - [System Assembly View1] Q@

ware Device Configuration Debug Simulation Window Help =IE X
IEBRMNRBRER AR : DA RS M AX Bz : BHEOON
i | Busintetfaces | Pots | Addresses [ﬁﬁeneratel\ddxesses
Name: Base Address High Address Size Bus Interface(s) Bus Connection Lock ICache DCache IP Type 1P Vers
»mb_plb plb_vd6 1.02a
= <@ dimb_cnth Imb_bram_if_cntr 2.10.3
C_BASEADDR 0400000000 04000031 [k w/siMe dimb o
(= ~2ilmb_cntir i Imb_bram_if_cntr 2.10.a
C_BASEADDR 000000000 0400003 [16K vsLMB inb o
= »DDR_SDRAM) mpme 400a
C_MPMC_BASEADDR Oxc000000 OBt [eaM /|SPLBO mb_plb o o o
(=)~ xps_bram_if_cntlr_1) ps_bram_if_cntlr 1.00.a
C_BASEADDR 488208000 0882001 [k wlspLB mb_plb 8] a a
[z~ debug_madule mdm 1.00b
C_BASEADDR 0584400000 DxB440 [wv[sPLe mb_pb o
(= ~#DIP_Switches_4Bit) ¥ps_apio 1.00.a
C_BASEADDR (xB7400000 03140 bk wispB mb_plb 5]
[«<»RS5232_DCE 7 xps_uartlite 1.00.a
C_BASEADDR 0484020000 0434021 [paK vspLB mb_plb o
= »R8232.DTE - ups_uatlte 1.00a
C_BASEADDR 034000000 048400 64K vsPLe mb_pb o
1< b3

[Platform Studio] | System Assembly View \ Block Diagram

Figure (3): The Hardware Part of Designed Soft Core Processor System
a. The block diagram of the system.
b. The assembly view of the system.

c. The address map of the system.

4. Adding DMA Controller

The platform studio provides an environment in which an available IP cores can
be accessed. The DMA controller core is available in the form IP module that can be dragged
from the IP catalogue to the system assembly view. The following steps are adopted to
perform successful DMA introduction to the system:

1. Using bus interface window the DMA core is connected to the PLB in the slave and
master module and the core parameters are customized to adapt with the processor
system.

2. Using the port window the interrupt port of the controller is connected to the interrupt
port of the processor.

3. Using the address window, the address map of the system is reconfigured to take the

DMA controller into consideration.

58

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

4. The resulting hardware part of the system is shown in Figure (4). Figure (4-a) shows the
assembly view of the system with DMA core, Figure (4-b) shows the address map of the

system with DMA core.

v

«w Xilinx Platform Studio - C:/pro/pro_dma/system.xmp - [System Assembly View1]

File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help
DPAHL DR D RRNRBERIBRAD DA RN iMBIAXIBRIEZ
. — A i L. L (;h Bus Interfaces ‘ Ports | Addresses |
fitiec M IPEaistog ! B ’g g Name Bus Connection IP Type IP Version
2 [&P mivoblaze 0 micioblaze A
Description 1P ‘ — D dimb Inby_v10 1.00.a
= & EDK Install -- C:\Xilins\10.15ED... ‘ D imb Imb_ 1.00.a
[&nalog ' plb_v46 1.02.a
[# Bus and Bridge ‘ ‘ 90— || @ Imb_bram_if_cntl ;M;\ a
#- Clock, Reset and Interrupt 9 O0—||® Imb_bram_if_cntir
[#- Communication High-Speed 9] mpme
[+ Communication Low-Speed ﬁ——Q T—1t—|| & #ps_bra c
(= DM& and Timer L ‘] bram_block
JeXPS Timer/Counter 1,00, | b———b—b——| | @ bram_black
¢ XPS Watchdog Timer 1.00. 9 " mdm ‘
¢ XPS Central DM Cont... 1.00 & lﬁ - cential dma]
' Fixed Interval Timer 1.01 : :: rr Latite
& Debug o ————|| & f £ ‘-:,r":u‘ar'!n‘e
3-} General Pupose 10 o P clock_generafor 0 clock_generator
:f: Interprocessor Communication @ proc s resitil) proc sy reset
[Memary and Memory Controller
@-PCl
D Desinbaeral Canteall

a
File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help
DA ELIP N DY RN RMBOR AR P-ARNGMBIEX B i BHEMNON
- X 1: Bus Interfaces \ Pots | Addresses ‘
Project | Applications ‘ IEEatabog ‘ | Instance Name ~ Base Address High Address Size Bus Interface(s) Bus Connection
Y dlmb_crith C_BASEADDR Ox00000000 04000031 16K v/5LMB dinb
Desciiplion 1P imb,_cri C_BASEADDR 000000000 0x00003 K visime b
& & EDK Instal - C:\Kiins\10.1AED. . debug_module C_BASEADDR 0484400000 0484401 64K v|SPLB mb_plb
‘f Analog ; wps_bram_if_cntli_1 C_BASEADDR 85208000 0x8820bfff |18K v |SPLB mb_plb
el — s ceniral.dma) C_BASEADDR ONGOZ00000 GRBO20NT K VISPLD T]
o DIP_Switches_ 481t C_BAGEADDR 0x7400000 Tea 1400 BIK v [SPLB Tb_plb
[# Communication High-Speed
®- Communication Low-Speed RS232_DTE C_BASEADDR 84000000 0x8400fff 164K v |SPLB mb_plb
= DMA and Timer RS232_DCE C_BASEADDR Ox84020000 0xB4021fff 164K v |SPLB mb_plb
¢ XPS Timer/Counter 1,00/ |[DDR_SDR&M C_MPMC_BASEADDR M8e000000 0Bifff B4M v SPLBO mb_plb
T XPS Watchdog Timer 1.0,
' XPS Central DMA Cont... 1.0,
' Fixed Interval Timer 1.0
[# Debug
[#- General Purpose 10
- Interprocessor Communication
(- Memory and Memary Controller
- PCI
(#- Peripheral Controller
[# Processor
- Utilty
Project Local pcores - C:AproSpro_.. ¢
§ | 24 [Platform Studia] ‘ System Assembly View ‘ Block Diagram

b
Figure (4): The hardware part of designed soft core when adding DMA core.
a. The assembly view of the system.
b. The address map of the system.

59

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

5. Programming the system

The C -language is used to program the resultant system hardware to operate in
DMA mode, Figure (5) shows the flow chart of the prepared program. Application Peripheral
Interfaces (API) are used to make the hardware peripheral be sensed by the C —language
compiler. The APIs are software drivers constructed in the form of C -language functions.

The following APIs are used in the prepared program.

#define XDmaCentral _mWriteReg(BaseAddress, RegOffset, Data)
Where:

Base address: represents the base address of the DMA controller.

Offset address: the offset address of each register in the controller. The offset address of each
register is shown in Table [1].

Data: the data request to program the register.

Table (1): XPS Central DMA Controller Registers [4]

Register Name Base Address+ Default Access
Offset(hex) Value(hex)

Software Reset Register (RST) C_BASEADDR +0 NA Write
DMA Control Register C_BASEADDR +4 80000004 R/W
(DMACR)

Source Address (SA) C_BASEADDR +8 00000000 R/W
Destination Address (DA) C_BASEADDR +C 00000000 R/W
Length (LENGTH) C_BASEADDR +10 00000000 R/W
DMA Status Register C BASEADDR +14 00000000 Read
(DMASR)

Interrupt Status Register (ISR) C_BASEADDR +2C 00000000 Read/TOW
Interrupt Enable Register (IER) C_BASEADDR +30 00000000 R/W

60

file:///C:/Users/HP/AppData/Local/Temp/Rar$DI00.363/xdmacentral__l_8h.html%23a24

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

Include Files : xparameter.h , xstatus.h ,

v

Define :
DMA central base address 0x80200000
Buffer size 95
Xuint32 SrcBuffer[buffer_size]
Xuint32 DestBuffer[buffer_size]
Xuint8 *SrcPointer
Xuint8*DestPointer

v

Initialize DMA device

v

Program the control register DMACR to
increment source and destination addresses

v

Disable all interrupts

v

Program source and destination registers with
corresponding addresses

!

Transmit data from Mat lab media

v

Start DMA operation to transfer data from source
to destination buffers

v

Check the states register to conform transfer
achievement

v

Check the destination buffer contents

\4

End

Figure (5): The flow chart of designed system programing

61

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2

6. Results

Figure (6) shows the data read from destination buffer and the data transferred from the

source buffer displayed in hyper terminal window.

% Xilinx Platform Studio - C:/pro/pro_dma/system.xmp - [System Assembly View1]
File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help
DR EHL:E® '

Project Information Area

Project J Applications

Software Projects
1 14dd Software Applicati
mbefaull: microblaze_0_|
mDefaull: microblaze_0_:

=] mPloiecl: TestApp_M

(#- Processor: microblaze |
Executable: C:\pro‘pri
[#- Compiler Options
[#-Sources
Headers

2
2
L

= [fProiect: Testapp_P) :I’ o8 99 60 61 62 63 64 69 66
1
1

223

[#- Processor: microblaze |
Executable: C:\pro‘pri
(#- Compiler Options

Sources 3 3
@ Headers The Destination

= i Project: low_level buffer is :
[#- Processor: microblaze | 1 2 3 4 5 6 7 8
Executable: C:\pro\pri 9 10 11 12 13 1[l 15 16 17 18
&) Compiler Options 19 20 21 22 23 24 25 26 27 28
Sources 29 30 31 32 33 34 39 36 37 38
HOadEE e 39 40 41 42 43 bh 49 46 47 48

w
[=<]
w
o
~
Py
~
Uy
~
N
~
w
~
~
~
a
~
(=2}
CO~J NI F LN~

I 2y Reading c:/ A

1. INFO: iMPACT: 50
1. INFO: iMPACT: 22
1. INFO: iMPACT -
L. INFO: iMPACT: 573 Connected 00:01:13 Auto detect 9600 8-N-1
1. INFO: iHPACT - . . .

<

CAPS Num

l| 82 95 ASSEMBLY ~
13 147 166 173 186 199 212 225 238 251 1, a2
8 21 34 41 60 73 86 9 112 125 | S
AN EEEEENE N
142 155 168 181 19 207 220 233 246 3 Bri e d s S I
16 29 42 0 13 26 39 52 65 78 [30580 -
91 Toc 117 1% 143 156 169 182 195 208 5. 10, -27672
e 221 236 27 b 17 30 43 56 69 82 L
o . |55 108 121 13 147 168 1713 186 199 212 s
< [oy 225 238 251 8 21 3% 47 60 73 86 0. r0, ro
Executable: C:\Desklopimalabdmay 239 %g %gg %28 %gl %gl‘ %}7 %zﬂ %93 g%s ;5’ ;3952“” 8488206020555 e
2 k5, r19, r
& e 103 116 129 12 155 168 181 19 207 220 v
Hasdae 233 26 3 16 29 42 >
< il |
x {0x81800000-0x8180££L. ~
{0x83c00000-0x83cOLEL
{0x84000000-0x8400££L:
({0x84020000-0x8402££f:
({0x84400000-0x8440££f:
{0x88208000-0x8820bEL 5 _,I
0x8c000000-0xBEEEEEE] —
“;'z nasn -nonlock ~%) connected 0:01:12 Auto detect | 9600 8-H-1 CROI AP5 M t ik & = ss268b7¢ !
e =X

£

>

Console Window

<
Outpwt | Warming | Enor |
CAP5 [NUM [SCRL [Ln 121 ol 33 [[

Figure (6): The Data Transfer from Source to Destination Buffer

62

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2

Figure (7) shows the operation of data transfer displayed on chip scope window during write
data bus cycle. Figure (7-a) presents the data flow with address during write bus cycle, Figure
(7-b) presents the data flow with address during write bus cycle zoomed out.

* juntitle” 7 ChipScope Pro Analyzer [new project]
Edit

S | T
it

@ TR RIL AR B

g i New Project i & Trigger Setup - DEV:0 MyDeviced (XCISS00E) UNIT:0 MYILAD (1LA) o' o &
o T
£ @ : 'J?ADGE?,hna:?mwuo (CI8500E b4 Match Unit | Function [Value | Radix | Counter |
-N & LNITO MylLE0 (LS) A& - m2TRIG | In Range j »=8C02_1488, <=6C02_1 snﬂl Hex ‘ isablec I;l
™A Trigger Setup .
i Waveform S| [Aae | Active | Trigger Condiion Name | Trigger Condition Eguation | Oulput Enable
~N ¢ |Add J
: Listing J oel Il - TriggerConditiond | h &8 M2 | Disabled i
(=l Bus Plat -
=N =1 =

3¢ Data Port -

& PLB_SrdDBus

o FLE_wiDBus

o PLB_ABUS

o iba_trig_in] 5 16

o Trace_PC i =] H|E 1 l I 1] 1 1
GH. 0 MB_Halted o PLB_SravBus o o T - |
CH: 1 Trace_PC[31] =

Storage Qualification M1 &E M2

e

El

=

=
: 2| e |[Window | = Windows: 1 Depth: (512 - Position 0
3 Signals: DEV: 0 UNIT: 0 = o l ! o

Bl

- DEV:D MyDewi UNIT:0 MyILAD {ILA}

e e’ @
52
1

CH: 2 Trace_PC(30] * FLB wrDBus 3| 39 1 X 2 X 3 X 4 X 5 X [X 7 8
CH. 3 Trace_PC[29]

SN TPt | RhimEaa acofacofiaBs J_BC0214BC }_BC0214C0 ¥_BC0314Ca % BCO214C8 J_BCO214CC ¥_BC0214D0 Y BCOZ14DA Y_8C0214
CH: 5 Trace_PG(27]

CH. 6 Trace_PC[26]

CH: 7 Trate_PC[25]

CH: 8 Trace_PCl24]
CH. 4 Trace_PE[23]
CH: 10 Trace_PC[22)
CH: 11 Trace_PCI21]
CH: 12 Trace_PC[20]
CH: 13 Trace_PC[19]
GH. 14 Trace_PCl18]
CH: 15 Trace_PCI 7]
CH: 16 Trace_PC[16]

CH: 17 Trace_PC[15] T

CH: 18 Trace_PC[1 4] I“ = Pl4 plenle] o] T =
CH: 19 Trace_PC[13] X: 0 [4]¢] o:0 [4]¢] |a(x-0): 0

CH: 20 Trace_PC[12] =

CH. 21 Trace_PC[1]

pScope Pro Analyzer [new praject]

pScope Pro Analyzer [new project]
File Yiew JTAGChain Device TriggerSetup \Waveform Window Help
@lrm 1222 AR

_v| 3 Trigger Setup - DEV:D MyDeviceD (XC3IS500E) UNIT:0 MyILAD ILA) ~ © =
) Match Unit ’ Function Value Counter

§ DEV:0 MyDeviceD (<C38500E;
9 UNIT:0 MylLAD (ILA)
Trigger Setup
Waveform
Listing

- I M2TRIG2 In Range ==B8C02_14B8, <=8C02_1600 disabled

BUL4, [uzew ¢

Add || Active Trigger Condition Name Trigger Candition Equation Output Enable
Dl | ® | TriggerCondition0 M1 88 M2 | Disabled

Type: |Window | v Windows: 1| Depth: 512 ~| Position: | 0

Storage Qualification M1 &8 M2

Signals: DEV: 0 UNIT: 0
¢ Data Port
o= PLB_SrdDBus
o PLB_wiDBus = o
o PLB_ABus - | &8 waveform - DEV-D MyDevice0 ((CISSO0E} UNIT:0 MALADQLA) 0 0 =
o
o_';:;:ﬁ;g‘ Bus/Signal x| 0 ‘f 5:]

CH: 0 MB_Halted o PLB SrdDBus ol o
CH: 1 Trace_PC[31) -
OH: 2 Trace_PC[30] o PLB_wrDBus 39 (oo W2 (3 a8 306 X7 (8 (e Xra (i1 X121 30 X0 506X 71 81 X 20X(21 X2 2123242526 2 7N 282G 30/31)
on e Pl o PLB_RBus scolsco OO OCCOOCOCOCEOCCOC00COCCoooCCttoCd
CH: 4 Trace_PC[28] -

CH: 5 Trace_PC[27]
CH: B Trace_PC[26]
CH: 7 Trace_PC|[25]
CH: 8 Trace_PC[24]
CH: 8 Trace_PC[23]
CH: 10 Trace_PC[23]
CH: 11 Trace_PC[21]
CH: 12 Trace_PC[20]
CH: 13 Trace_PC(19]
CH: 14 Trace_PC(18]
CH: 15 Trace_PC[17]
CH: 16 Trace_PC[16]
CH: 17 Trace_PC[15]
CH: 18 Trace_PC[14] ‘
CH: 18 Trace_PC[13] - : r] ax-0):0
CH: 20 Trace_PC[13]

CH: 21 Trace_PC[11]

ainden 4

Figure (7): Data transfer based on DMA operation displayed on chip scope window
a- data flow with address during write bus cycle
b- data flow during write bus cycle zoomed out

63

Thi_Qar University Journal for Engineering Sciences, Vol.6, No. 2 2015

7. Conclusions

A soft core processor system is designed using embedded design techniques and
configured on FPGA slice. The system is accommodated to act in DMA mode to transfer data
from a peripheral to external DDR-SDRAM memory by adding a DMA IP core to the system
and programming the resultant hardware using C-language with suitable API. The transferred
data width is 32-bit which is adaptable the PLB data width. The system can operate with
(40K) internal Block RAM and external (64M byte) DDR-SDRAM. The designed system can
be used efficiently with video graphic arrays (VGA) to display graphics on a screen since the
speed of data transfer between memory and the VGA controller is sufficient to capture all the
pixels of the image frame(640columns x 480 rows) in 60 screen/second display mode, this

rate of data flow could not be attained with processor systems without DMA operation mode.

References:

1- Bakshi A. B., Burman A. B., & Chakraborty A. Ch. , 2014 , "Development of DMA
Controller for Real Time Data Processing in FPGA Based Embedded Application”, IOSR
Journal of VLSI and Signal Processing (IOSR-JVSP) . E-ISSN: 2319-4200, P-ISSN No.:
2319-4197, www.iosrjournals.org, PP 01-08 .

2- Tumeo A. T., Monchiero M. M., Palermo G. P., Ferrandi F. F. & Sciuto D. S., 2008,
"Lightweight DMA Management Mechanisms for Multiprocessors on FPGA", 1-4244-
1998 IEEE .

3- Allam P. A, 2013, "Design And Implementation Of USART IP Soft Core Based On
DMA Mode", International Journal of Computer Trends and Technology (IJCTT),
ISSN:2231-2803, http://www.ijcttjourmal.org, page no.:3580-3584.

4- http://www.talktoanit.com/A+/aplus-website/lessons-io-principles.html

5- XILINX, 2010, "LogiCORE IP XPS Central DMA Controller (v2.03a)" , Web Site:
www.xilinx.com, DS579.

6- Schmidt A. G., 2010, "Embedded Systems Design with Platform FPGAS",
TK7895.E42S527 2010, diacriTech, India, Web Site: www.elsevter.com/permissions.

64

http://www.iosrjournals.org/
http://www.ijcttjourmal.org/
http://www.xilinx.com/
http://www.elsevter.com/permissions

