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Abstract 

Electroencephalogram (EEG) signals provide a window through which we can view brain activity, are of great 
importance for neurological diagnosis, developing Brain-Computer Interface (BCI), and cognitive neuroscience. 
Despite the importance of EEG data, they being complex and non-stationary make it difficult for analysis. With 
the development of machine learning (ML) and deep learning (DL) as state-of-the-art methods for decoding EEG 
signals, attempting to provide optimal performance in both accuracy and computational time costs when it 
comes to the problem of extreme complexity such as classification of huge dataset sizes. This paper presents a 
comprehensive review of the most recent ML and DL techniques in EEG signal analysis. We examine the latest 
methods — Convolutional Neural Networks (CNNs), Transformer models, Recurrent Neural Networks (RNNs), 
and both hybrid and traditional architectures with their individual undertakings in tasks of seizure detection, 
emotion classification, and motor imagery to evaluate each approach efficiency. Overall, the results validate the 
high transformative efficacy of ML and DL in the EEG signal domain which might provide a key towards optimizing 
our current knowledge of brain function, as well as serving to increase diagnostic accuracy in clinical 
environments. 
 
Keywords—Electroencephalogram, Machine learning, Convolutional Neural Networks, Transformer-Based 
Models, Recurrent Neural Networks, Hybrid Architectures. 
 

1  Introduction 

      Electroencephalography (EEG) is a non-invasive method of measuring brain activity, it produces a visual 
representation of the electrical activity of the human brain, by taking measurements of the voltage difference 
between various brain regions and graphically displaying the results over time. Known as scalp or surface EEG, 
this type of standard clinical EEG uses multiple electrodes placed on the subject's scalp to detect low energy 
signals which are the field potential created by the fluctuations of large groups of cortical neurons (Sherman et 
al., 2020) and (Siuly et al., 2016). Clinical professionals use EEG extensively for diagnostic and treatment 
purposes, including diagnosing various neurological conditions and abnormalities of the brain and also the 
treatment of neurodegenerative diseases. For tasks such as accurately diagnosing epilepsy, the physician will 
use EEG to observe the abnormal activity of the brain, which indicates an epileptic seizure, it is also used by them 
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for diagnosing other disorders such as sleep disorders, dementia, Alzheimer’s disease, brain trauma, and 
neurofeedback. Additionally, EEG is widely used in the applications of Brain-Computer interfaces (BCI). A path 
for communication between the brain and a computer is created by BCI technology to help those with severe 
neuromuscular disorders to communicate by analyzing their brain activity (Angulo-Sherman et al., 2023) and 
(Sharma et al., 2024). This large number of EEG applications is a confirmation of the importance of its usage in 
various settings, but along with its simplicity to use and its potential, EEG produces large amounts of data that 
need to be analyzed by experts and monitored continuously, because of this, an automated signal analysis 
methods have been developed, but due to the non-stationary and multi-component nature of the EEG signal, 
the traditional signal analysis methods are not suitable for this task. 
On the other hand, this is exactly where the machine learning and deep learning tools have appeared and been 
applied. Having shown their efficiency in multiple areas, the two techniques have proven their success in working 
with brain signals and have made impressive contributions to all of the areas listed above (Zhang et al., 2023). 
When it comes to processing and analyzing very complicated and rich EEG data, deep learning and machine 
learning systems can complete this process of extracting the types of information and patterns that are required 
in an effective manner (Shoorangiz et al., 2021). This survey aims to determine and get an overview of what are 
the most recent and effective approaches to the analysis of EEG data using deep learning. The research is to 
examine what approaches of EEG analysis are known at present and how their performance varies in different 
tasks, as well as what special architectures, pre-processing techniques, and problems can be noted in the light 
of the most recent researches and developments.

2  Literature Review 

In this section, we go over the most recent techniques used in EEG signal analysis based on the models used.  

 

2.1    Convolutional Neural Network (CNN)-Based Models 

The reason behind why CNN-based models are used widely in the task of EEG analysis is because they have a 
good ability to learn the spatial features that exist in a signal. For example, (Dose et al., 2018) used Motor 
Imagery (MI) data, with a system that uses CNN layers in addition to the traditional Fully Connected (FC) layer 
for classification, to build an EEG-based system that can be used to improve rehabilitation strategies for people 
with stroke, the leading cause of disability in adults.  
 

 
Figure 1: Fully Convolutional Neural Network architecture, image from (Fawaz et al., 2019) 

 

EEGNet, a compact CNN for EEG-based brain–computer interfaces, introduced by (Lawhern et al., 2018), to 
design a single CNN architecture and accurately classify EEG signals from different BCI paradigms, while 
simultaneously being as compact as possible , it starts with the temporal convolution  to learn frequency-specific 
spatial filters and a wide variety of interpretable features over a range of BCI tasks, achieving high performance 
with SP300, MRCP, and ERN datasets allowing for capturing frequency information at 2 Hz and above.    
A 13-layer Deep Convolutional Neural Network (DCCN) is proposed by (Acharya et al., 2018) For detecting 
normal, preictal, and seizure classes by using Z-score normalization, zero mean, and standard deviation of 1 as 
pre-processing techniques for the signal before feeding it into the CNN, which consisted of three different types 
of layers: convolutional layer, pooling layer, and a fully connected layer. 
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In another study, (Raghu et al., 2020) aimed to classify seven types of seizures and non-seizure EEG patterns 
CNNs and transfer learning. EEG signals are converted into spectrograms using Short-Time Fourier Transforms 
(STFT) and then fed into the network. STFT is utilized to analyze the frequency content of nonstationary signals, 
such as EEG data, over time. It can be mathematically 
expressed as: 

𝑋(𝑡, 𝜔) = ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗𝜔𝜏𝑑𝜏
∞

−∞

  (1) 

where 𝑋(𝑡, 𝜔) represents the STFT of the signal 𝑥(𝜏), 𝑤(𝜏 − 𝑡) is a window function centered at time 𝑡, 𝜔 is the 
angular frequency, and 𝑗 is the imaginary unit. Classification is performed through two methods: firstly, using 10 
different pre-trained CNN networks; secondly, extracting image features utilizing the same networks followed 
by Support Vector Machine (SVM) as a classifier. 
 

 
Figure 2: EEGNet architecture, image from (Lawhern et al., 2018)

A study by (Chambon et al., 2018) applies spatial filtering to enhance the signal-to-noise ratio, then uses CNNs 
to capture spectral features from three modalities (EEG, Electrooculography (EOG), and Electromyography 
(EMG) signals), these features are then fed to the softmax to classify sleep stages, it found that using 6 EEG with 
2 EOG and 3 EMG channels and exploiting one minute of data before and after each segment which significantly 
improves classification performance when a limited number of channels is available. 

(Jonas et al., 2022) explored the potential of DL for diagnostic and predictive assessment based on EEG and to 

analyze serious diseases and those suffering from different etiologies of ACI through EEG signals. A basic CNN 

was used to predict the patient's condition. Two methods were employed to detect the decision. First, a visual 

analysis of all EEGs containing epochs was classified with a certainty factor ≥ 0.9. Second, the so-called Gradient-

weighted Class Activation Mapping (Grad-CAM) algorithm was used to highlight discriminative patterns. 

(Shoka et al., 2023) built an encrypted system to classify and recognize EEG data using Chaotic Baker and Arnold 
map transformation algorithms with CNNs, to protect sensitive medical EEG signals from detection. In the 
proposed system, the first phase describes an automated encrypted spectral model for mapping EEG. It includes 
three main modules: Signal Preprocessing and Handling (SPH) module to convert EEG signals into encoded 2D 
spectral images, EEG Spectral Classification Module (E2SC) encoded to classify the encoded images using the 
trained networks AlexNet, DarkNet19, GoogleNet, ResNet50, and QuesqueNet. Then, the final layers are 
replaced with new layers that adapt to the new encoded dataset. Seizure Detection Assessment (SDA) module 
evaluates the performance of the proposed approach with different experimental scenarios.

The study presented by (Siuly et al., 2023) aimed to solve the problem of the time-consuming traditional manual 

feature extraction methods, to do that, they presented a feature extraction design based on a deep residual 
network (ResNet) that consists of three stages: signal pre-processing, extraction of hidden patterns of EEG 
signals, and classification by softmax layer. This design can automatically extract features from EEG signal data 
with high accuracy in order to find out if a person has schizophrenia or not. 
 
 

2.2     Transformer-Based Models 

Transformer architectures were initially developed for Natural Language Processing (NLP) tasks, they have been 
applied to EEG signal processing and they show the potential to effectively capture long-range dependencies. 
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The main component in the transformer models is the use of attention mechanisms to capture temporal-spatial 
dependencies in EEG data effectively and demonstrate relatively competitive performance when compared with 
other methods. For example, one method proposed the Gated Transformer Networks (GTN) by (Liu et al., 2021) 
is an extension of the standard transformer architecture, but here it is developed for multivariate time series 
classification. Using two encoder towers to model attention and masking across step-wise and channel-wise 
correlation. A step-wise encoder is used to encode temporal features by self and multi-head attention with 
positional encoding used, as well as a channel-wise encoder without positional encoding to compute the 
attention weights across different channels. 
In a study by (Hussain et al., 2022) a Multichannel Vision Transformer (MViT) architecture was proposed to 
classify preictal and interictal EEG activities. EEG segmentation and Continuous Wavelet Transform (CWT) to 
convert each segment into an image-like representation known as scalograms, which are then split into fixed-
size patches and inputted into the MViT which consists of multiple branches, each serving as a transformer 
encoder to process a distinct EEG scalogram image. The resulting features are fed into a Multi-Layer Perceptron 
(MLP) for EEG classification. 

 
Figure 3: Framework of MViT for multi-channel EEG feature learning, image from (Hussain et al., 2022) 

 

A transformer-based unsupervised learning approach for seizure identification in EEG data is introduced by 
(Potter et al., 2022) By reframing the problem as anomaly detection, an autoencoder involving a transformer 
encoder is trained via an unsupervised loss function, incorporating a masking strategy specifically designed for 
multivariate time series. The autoencoder learns meaningful latent representations from EEG recordings, 
reconstructing input data with minimal error in the absence of seizures and higher reconstruction errors for 
records with seizures. 
In (Qi et al.,  2020), the authors described an automatic epilepsy detection method by using multi-scale wavelet 
analysis to decompose EEG signals into components of different frequency bands, followed by feature extraction 
and CNNs with an attention mechanism for classification. 
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Figure 4: Attention mechanism-based CNN, image from (Qi et al.,  2020) 

 

(Ying et al.,  2024) on the other hand, emphasize the usefulness of attention mechanisms in sequence data 
analysis as they investigate the use of electrophysiological methods to examine brain activity for accurate 
symptom evaluation. It presents the EEG-based Depression Transformer (EDT) model, which is based on EEG 
data extraction and reliably differentiates depressed people from healthy controls by identifying specific traits. 
The effectiveness of the EDT model is attributed to capture depression-specific information using information 
extraction and attention modules. 
The study conducted by (Yan et al., 2022) highlights the design of a model to predict epileptic seizures for 
patients with epilepsy. This model relied on transformer networks to extract and integrate 3D features of EEG 
signals. STFT has been used to extract time-frequency information from EEG signals and automatically generate 
enhanced features. It also converts the EEG signal into a two-dimensional matrix that includes time and 
frequency domains. Time-frequency features were extracted from the EEG signals using the wavelet transform 
tool. The seizure prediction task is completed after post-processing. Here the design will work to predict seizures 
with high efficiency, and this will help a lot in maintaining the quality of life.  
In (Zhou and Pan, 2021), the authors proposed Spectrum Attention Mechanism (SAM) and Segmented-SAM 
(SSAM) for Time Series Classification (TSC). SAM integrates adaptive filtering into deep learning models by 
transforming time series data into the frequency domain using a Discrete Cosine Transform (DCT) 
DCT is employed to transform a signal into a sum of cosine functions of different frequencies. For a 1-dimensional 
signal 𝑥(𝑛) of length 𝑁, the DCT is expressed as: 
 

 𝑋𝑘 = ∑ 𝑥𝑛𝑐𝑜𝑠 [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑛=0

         (2) 

where 𝑋𝑘  is the DCT coefficient at index 𝑘, 𝑥𝑛 is the input signal, 𝑁 is the length of the signal, and 𝑘 is frequency 
index. The benefit of this transformation is to effectively compress the signal energy into a few coefficients. 
Apply a trainable mask to filter out the noise and transform it back into the time domain. For SSAM on the other 
hand, similarly divides the TC data into a number of segments to keep the time-domain characteristics by using 
a heuristic strategy that applies SAM to each segment on an individual level and then combines the results, here 
these results are considered as features that will be processed using a CNN. 

The work of (Hao et al., 2022) proposes an improvement for deep learning networks with an additional module 

called class-specific attention (CSA) which is incorporated into the feature extraction stage. It consists of 

transforming the input features into keys, queries, and values, and then performing class-specific feature 

importance calculations for each feature. To highlight all the unique class features, this module utilizes class 

differentiation element, the generated attention weights are then used to modulate the features and as a result, 

increase the emphasis on useful class-specific information.  
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2.3    Recurrent Neural Network (RNN)-Based Models 

To process best the sequential data like natural language, time-series data, and EEG, the RNN-based models are 
employed, specifically Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), In addition, the RNN 
networks are capable of capturing and modeling effectively the temporal dynamics of EEG signals and enabling 
accurate classification of emotional states and abnormal EEG patterns and other useful EEG patterns. A general 
form of an RNN calculates the state at time 𝑡 and the hidden state ℎ𝑡−1 from previous time step based on 𝑥𝑡 
which represents the input, the ℎ𝑡 is hidden state at time step  𝑡 and the output 𝑜𝑡 is computed from the hidden 
state ℎ𝑡 

 

Figure 5: Structure of an RNN block, image from (Alessandrini et al., 2021) 

 

For a time series data {𝑥1, 𝑥2, … , 𝑥𝑡}, the hidden state ℎ𝑡 at time step 𝑡 is computed as: 

ℎ𝑡 = 𝑓(𝑊ℎℎ𝑡−1 + 𝑉ℎ𝑥𝑡 + 𝑏ℎ) (3) 
Here, the input at the time 𝑡 is represented by  𝑥𝑡 and ℎ𝑡−1 is the hidden state from previous time step, 𝑉 and 
𝑊 considered as the weight matrices for the hidden layers, 𝑏 is the bias for the hidden and output states, and 𝑓 
is the activation function (tanh or ReLU). The output 𝑜𝑡  is calculated as: 

𝑜𝑡 = 𝑓(ℎ𝑡 +  𝑏𝑜) (4) 
where 𝑓 is the output function (a softmax function or other activation function). 

The LSTM cell consists of several gates which the purpose of is regulating the flow of information in modeling 
long sequences. Mathematically, the LSTM cell operations are defined as follows:  
For a time series data {𝑥1, 𝑥2, … , 𝑥𝑡}, the LSTM cell computes the forget gate as: 

𝑓𝑡 = 𝜎(𝑊𝑥
𝑇𝑓 ⋅ 𝑥𝑡 + 𝑊ℎ

𝑇𝑓 ⋅ ℎ𝑡−1 + 𝑏𝑓) (5) 

the input gate is defined as : 

𝑖𝑡 = 𝜎(𝑊𝑥
𝑇𝑖 ⋅ 𝑥𝑡 + 𝑊ℎ

𝑇𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖) (6) 

and the candidate cell state is defined as: 

𝑐�̃� =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑥
𝑇𝑐 ⋅ 𝑥𝑡 + 𝑊ℎ

𝑇𝑐 ⋅ ℎ𝑡−1 + 𝑏𝑐) (7) 

where 𝑊𝑓 , 𝑊𝑖, and 𝑊𝐶  considered as weight matrices, 𝑏𝑓 , 𝑏𝑖, and 𝑏𝐶  are biases, 𝜎 is the sigmoid activation 

function, and tanh is the hyperbolic tangent function. Then, the cell state is updated as: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐˜𝑡       (8) 

where 𝑐𝑡−1 is the previous cell state and ⊙ denotes element-wise multiplication. The output gate is computed 
as: 

𝑔𝑡 = 𝜎(𝑊𝑥
𝑇𝑔 ⋅ 𝑥𝑡 + 𝑊ℎ

𝑇𝑔 ⋅ ℎ𝑡−1 + 𝑏𝑔)             (9) 

and the hidden state is updated as: 

𝑜𝑡 , ℎ𝑡 = 𝑔𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡) (10) 

where 𝑊𝑜 and 𝑏𝑜 are the weight matrix and bias for the output gate, respectively (Alessandrini et al., 2021). 
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Figure 6: LSTM cell unit, image from (Alessandrini et al., 2021) 

 

Roy et al. proposed a network called ChronoNet to identify abnormal brain activity in the TUH dataset, the 
network combined Conv1D layers that included multiple filters with exponentially changing lengths, following 
that, stacked layers of GRUs connected in a feedforward way using skip connections, where these connections 
will guide the network to ignore some GRU layers where the demand of model complexity is less required by 
the data (Roy et al., 2019). In a study after that by (Chowdary et al., 2022), the authors tried to classify emotions 
using different RNNs on the EEG Brain Wave Dataset with three different emotional states, positive, negative, 
and neutral. They applied three RNN models which are RNN, LSTM, and GRU where all three are trained using 
Adam optimizer with sparse categorical cross-entropy as a loss function. 
 

 
Figure 7: Emotion Recognition from EEG Signals Using RNN, image from (Chowdary et al., 2022) 

 

(Ma et al., 2021) proposes a recurrent t-distributed Stochastic Neighbor Embedding (t-SNE) neural network 
model  to predict customer decision-making behavior in the market field. This was done by implementing the t-
SNE algorithm to extract features, and then a recurrent neural network is created with an LSTM layer. SoftMax 
was used for feature training and EEG signal classification. This model could predict customers’ thinking well.  
The study conducted by (Alessandrini et al., 2022) confirmed the development of a method for automatic 
classification of incomplete or corrupted data. The Robust Principal Component Analysis (RPCA) algorithm was 
used with an RNN for classification. This network was used with corrupted data as outliers and was processed 
during RPCA to remove outliers from the signal for diagnosing Alzheimer's disease (AD). Even with corrupted 
data, they confirmed that the accuracy increased by about 5% with respect to the Robust Principal Component 
(RPC) that was tested on the RNN with EEG data, which was correctly processed through traditional PCA. 
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2.4    Deep Learning Models Based on Hybrid Architectures 
 
The applications of one model for learning spatial features (such as CNN-based models) and another in 
processing the temporal characteristics of a signal (such as an RNN-based model) may constrain their capacity 
to process and understand both spatio-temporal patterns of EEG signals that vary in time domain and frequency 
domain. Consequently, some of the researchers began to combine a variety of models and architectures 
together to take benefit from their strengths. The authors, for example, (Spampinato et al., 2017) followed a 
two-stage approach where they intended to investigate how well we can express human visual capabilities using 
both RNN and CNN models. In the first stage, the RNN is used as an encoder trained to learn the temporal 
features of raw EEG evoked by a subject looking at an image, and using a CNN-based regression in the second 
stage to project images into the learned features manifold representation. 
Another research was done by (Xu et al., 2020), in which a One-Dimensional Convolutional Neural Network-Long 
Short-Term Memory (1D CNN-LSTM) model was proposed to detect epileptic seizures by analyzing the EEG signal 
with high accuracy and timeliness. This model is done by pre-processing the EEG signal data and then designing 
a one-dimensional CNN to extract data features. To process these extracted features, LSTM layers are used. 
Then, the output features are fed to several fully connected layers for final seizure recognition. A three-pass 
hybrid deep learning system presented by (Golmohammadi et al., 2019), its objective was to identify significant 
clinical patterns in the TUH dataset by extracting features from the data using  Linear Frequency Cepstral 
Coefficients (LFCCs) and processing them through their proposed system that captures the temporal features in 
the first stage using Hidden Markov Models (HMMs), followed by spatial and temporal context analysis using 
Stacked Denoising Autoencoders (SdAs), and a statistical language model at the end to enhance the accuracy of 
EEG event classification. 

 
Figure 8: A three-pass architecture for automatic interpretation of EEG, image from (Golmohammadi et al., 2019) 

 

NeuroNet described in (Lee et al., 2024), is ahybrid self-supervised learning framework for sleep stage 
classification using single-channel EEG, combining NeuroNet with the mamba-based temporal context module 
with Sleep-EDFX, SHHS, and ISRUC-Sleep datasets, demonstrated the highest performance across all datasets, 
with the exception of Sleep-EDFX. Compared to other SSL. The use of NeuroNet exceeds most recent supervised 
learning methods, even with minimally labeled data. Furthermore, it uses multi-resolution CNNs to extract 
features from both high- and low-frequency EEG data, and STFT Encoder performs admirably on most datasets. 
Sanchita et al. used electrocardiogram (ECG) and EEG data analysis to identify and evaluate depression. The 
primary characteristics examined in the brain signal are band power alpha, entropy, standard deviation, and 
Hjorth activity (HA). Performance was enhanced by combining the CNN, KNN, and SVM classifiers with the LSTM 
autoencoder model. After preprocessing the signal to eliminate artifacts, the RNN learned the data then sent it 
out for further training by the LSTM autoencoder while a minimal test was done in the end for categorizing and 
predicting depression  (Sanchita et al., 2023). 
A hybrid deep learning approach for detecting sleep arousal events has been demonstrated in (Foroughi et al., 
2023). To begin with, this technique requires separating the signal in the Discrete Wavelet Transform (DWT) and 
further windowing for simplification. After that, the combined feature extraction is performed by Inception-
ResNet-v2 structure and classification by SVM. To optimize the SVM, Gray Wolf Optimization method is used. 
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A machine learning system was presented by (Yogarajan et al., 2023) to analyze EEG patterns and detect seizure-
indicative asymmetry. They derived the statistical and Hjorth parameters of signals decomposed using the 
Stationary Wavelet Transform (SWT). To identify essential characteristics of SWT-compressed data that are vital 
for further classification with Deep Neural Networks (DNNs), the Binary Dragonfly was proposed. 
Varalakshmi et al. present an approach to predict epileptic seizures, which involves decomposing EEG signals 
using Tunable Q Factor Wavelet Transformation (TQWT), extracting statistical, temporal, and global features. 
Techniques like Continuous Bag of Words (CBoW) and dimensionally reduced using autoencoders are applied to 
extract temporal features, while global features are Identified using PCA across different sub-bands of the signals 
to identify the signals, a basic Artificial Neural Network (ANN) is employed  (Varalakshmi et al., 2021). 

 

2.5      Traditional Machine Learning Models 

In the examination of EEG rhythms, standard BCI, traditional methods are used, like SVM, KNN and Naïve Bayes 
(NB). For tasks such as mental stress detection, a study by (AlShorman et al., 2022) aimed to use Fast Fourier 
Transform (FFT) as a feature extraction stage, along with applying SVM-assisted learning classifiers to achieve 
high accuracy in detecting mental stress accurately using frontal lobe and total EEG signals. The posterior 
probability of the prior, the predictor probability of the target, and the prior probability of the predictor were 
also computed using NB, which offers a Bayes hypothesis. This approach is simple and may be utilized as a real-
time and continuous monitoring technique for medical purposes. 
(Bashivan et al.,  2016) investigated robust representations of EEG data. Data is transformed into a sequence of 
multispectral pictures that preserve topology. They used different techniques, such as SVM, Deep Belief 
Networks (DBN), Random Forest Ensemble, and Logistic Regression, to determine which hyperplane best splits 
data points into discrete groups. Furthermore, Jang et al attempt exact EEG classification. DEAP and DREAMER 
were the two EEG datasets for emotional and psychological states used by the scientists who did not employ 
Graph Neural Networks (GNN) but only conventional approaches. The algorithms used were Spatial-Temporal 
Graph Convolutional Network (ST-GCN), ChebNet, and Deep Graph Convolutional Neural Network (DGCNN) 
among others. KNN, SVM, Recurrent Attention Convolutional Neural Network (RACNN) were among the 
methods applied for data analysis. Besides this model showed significantly better performance when compared 
to its own version that did not learn graphs (Jang et al., 2021). 
(Abdullah et al., 2019) searched different classification algorithms for analyzing data related to epilepsy. It 
utilized the Hilbert-Huang Transform (HHT) for purpose of data extraction, also it uses the Gaussian Deep 
Boltzmann Machine (GDBM) for classification purpose. GDBM exhibits the highest accuracy as if it compared to 
SVM, NB, and logistic regression. 

 
Figure 9: Overview of the approach by (Bashivan et al.,  2016) 

 

Finally, (Savadkoohi et al., 2020) concerned the implementation of feature extraction and selection in three 
domains: time, frequency, and time-frequency. EEG signals were filtered using a third-order Butterworth 
bandpass filter for the time-domain aspects, and statistical characteristics such as mean, skewness, variance and 
kurtosis were extracted from five brain wave categories, which are: Delta, Theta, Alpha, Beta, and Gamma. 
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Fourier and Wavelet Transforms were used to extract features related to both frequency and time-frequency 
features resulting in a total of 60. feature selection was performed using the T-test and Sequential Forward 
Floating Selection (SFFS), the selected features were then fed into SVM and KNN for classification. 

3  Discussion of Previous Findings 

In the previous section, we discussed various machine learning algorithms which were developed by many 
researchers to find ways that would help improve the accuracy and reliability of diagnostic tools for categorizing 
EEG signals. Below we state and discuss the outcomes from the previously mentioned studies which introduced 
different ML and DL models that demonstrate their applicability in this area. Many studies highlight the 
effectiveness of RNN and hybrid models in EEG classification. Roy et al. achieved accuracies of 90.60% and 
86.57%, on the TUH Abnormal EEG Corpus surpassing previous accuracy benchmarks by 1.17% showcasing the 
efficacy of using Conv1D and GRU layers. Chowdary et al. reported LSTM at 97% accuracy, GRU at 96%, and RNN 
at 95% for classifying emotional states. Vinay et al. showed promising results with RNNs, while Spampinato et 
al. combined RNNs and CNNs to achieve 83% accuracy. Alessandrini et al. demonstrated 97.9% accuracy using 
PCA. Whereas the results related to CNN models are varied. For example, Raghu et al. 's Inceptionv3 obtained 
an 88.30% accuracy while Chambon et al. utilized spatial filtering and CNNs to advance sleep stage classification. 
On the other hand, Qi et al. acquired 98.89% for triple and 99.70% for binary classification accuracies respectively 
in Bonn and Bern-Barcelona datasets although EEGNet has been shown to have good performance with all BCI 
paradigms. 
Other studies show the effectiveness of transformer-based and hybrid models in the analysis of EEG data. Using 
the CHB–MIT dataset, Hussein et al. employed MViT to achieve over 99% sensitivity, specificity, and accuracy 
with a low false positive rate. Yan et al. predicted epileptic events with a sensitivity of 96.01% and a low rate of 
false positives. By integrating attention mechanisms with EEG data, Ying et al. succeeded in classifying 
depression with high accuracy. High precision was achieved by Xu et al. in binary and multi-class tasks related to 
seizures. More than 90% of neurological diseases were identified by Golmohammadi et al. Using hybrid 
architectures, Lee et al. were able to successfully capture temporal relationships. Pange et al. used an LSTM 
autoencoder and achieved 97% accuracy. Employing integrated RNNs with CNN, Spampinato et al. were able to 
recognize cognitive tasks with an accuracy of almost 83%.                           
However, other results which are related to SVM methods show that AlShorman et al. achieved accuracies 
between 90% and 98.21% using SVM classifiers, showcasing robust performance. Savadkoohi et al. compared 
SVM and KNN classifiers, with SVM demonstrating superior accuracy of 100% accuracy, sensitivity, and 
specificity. 
Lastly, other studies showed high performances using different models and techniques, for example, Acharya et 
al. achieved an accuracy of 88.67%, along with sensitivity and specificity rates of 95.00% and 90.00%, 
respectively, for seizure detection. Potter et al. achieved an AUC of 0.93 ± 0.005 on the MIT dataset, highlighting 
strong performance. Liu et al. 's GTN achieved accuracies ranging from 88.9% to 100% across diverse datasets. 
Foroughi et al. achieved an average accuracy of 93.82%, ensuring computational efficiency gains. Abdullah et al. 
reported 100% accuracy using GDBM, for demonstrating significant diagnostic potential. Shoka et al. achieved 
accuracies of 86.11% and 84.72% using GoogleNet with Arnold and Chaotic methods, respectively. Zhou and 
Pan's SSAM-CNN model showed superior performance over traditional and deep learning methods. Jang et al. 
achieved accuracies of 73.5% ± 8.07% for DEAP and 55.5% ± 7.59% for DREAMER. and Varalakshmi et al. 

improved the accuracy using their methodologies, achieving accuracies up to 98% with ANN classifiers.
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Table 1: Summary of Previous Studies 

Author(s) Year Application ML Model(s) 
Feature 

Extraction 
Dataset Results 

Bashivan et 
al. 

2016 BCI 

CNNs and VGG 
(Visual 

Geometry 
Group) and 

LSTM 

CNNs 

EEG data 
during a 
working 
memory 

experiment 

Single-Frame 
Classification Test 

Error:12.39%  
Multi-Frame 

Classification Test 
Error: 8.89% 

 

Acharya et 
al. 

2017 
Detect normal, 

preictal, and 
seizure classes 

CNNs CNNs / 

CNN model 
obtained 88.67% 
accuracy, 95.00% 

sensitivity, and 
90.00% specificity. 

 

Spampinato 
et al. 

2017 
Automated 

visual 
classification. 

RNN  
CNN 

CNNs ImageNet 
83% classification 

accuracy 

Lawhern et 
al. 

2018 BCI CNNs CNNs 
SP300, 

MRCP and 
ERN 

EEGNet generalizes 
across paradigms 
better than when 

only limited 
training data is 

available 
 

Dose et al. 2018 

Rehabilitation 
of stroke 

survivors using 
BCI and motor 

imagery 

CNNs 

Temporal 
and spatial 
convolutio
nal filters 

EEG Motor 
Movement

/MI 

The selected global 
classifier reached 
80.38%, 69.82%, 

and 58.58% mean 
accuracies for 

datasets with two, 
three, and four 

classes, 
respectively. 

 

Chambon et 
al. 

2018 
Sleep stages 
classification 

CNNs 
CNNs 

followed by 
maxpooling 

MASS 
dataset 

(Montreal 
Archive 
 of Sleep 
Studies) 

Found that 
exploiting one 
minute of data 

before and after 
each segment 
significantly 

improves 
classification 

performance when 
a limited number 

of channels is 
available. 

 

Roy et al. 2019 
Identification 
of  abnormal 
brain activity 

CNNs and 
GRU 

CNN for 
frequency 

feature 
extraction 

TUH 
Abnormal 

EEG 

90.60% training 
Accuracy and 

86.57% testing 
accuracy 

Golmoham
madi et al. 

2019 
EEG 

classification 

Hidden 
Markov 
Models 

Linear 
frequency 
cepstral 

The TUH 
EEG Corpus 

sensitivity above 
90% while 

maintaining a 
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(HMMs) and 
SdAs 

coefficients 
(LFCCs) 

specificity below 
5% 

Abdullah et 
al. 

2019 
EEG 

classification 

GDBM, 
Logistic 

regression, 
Naïve Bayes, 

and SVM 

Hilbert-
Huang 

Transform 
(HHT) 

Epileptic 
EEG data 

The classification  
accuracies were 

97%, 98%, 97% and 
100%. 

GDBM showed the 
highest  

performance 

Raghua et al. 2020 

Classification 
of seven types 

of seizures 
alongside non-

seizure EEG 
patterns 

CNN and  
SVM 

Pretrained 
CNN 

TUH 

Accuracy using the 
Inceptionv3 
pretrained 

network: 88.30% 

Xu et al. 2020 
Epileptic 
seizures 

detection 

1D 
Convolutional 

Neural 
Network (1D 

CNN) 

1D CNN 

UCI 
epileptic 
seizure 
dataset 

This method 
achieved high 

accuracy of 99.39% 
and 82.00% on the 

binary system 
and epileptic 

seizure recognition 
tasks 

Savadkoohi 
a et al. 

2020 
Epileptic 
seizures 

detection 

SVM and 
KNN 

Statistical 
feature: 
mean, 

variance, 
skewness, 

and 
kurtosis,  
Fourier 

Transform, 
and 

Wavelet 
Transform 

Bonn EEG 
database 

SVM: 100% 
accuracy, 

sensitivity, and 
specificity 

 KNN: accuracy of 
99.5, sensitivity of 

99%, and 100% 
specificity. 

Jang et al. 2021 
Emotional 

video 
classification 

CNN, RNN, 
GNN, LSTM, 
and RACNN 

Converts 
the raw 

EEG signals 
to 

features 
for end-to-

end 
learning 

DEAP 
database 
DREAMER 
database 

The accuracy 
results for DEAP 

were 56.6±8.39%, 
while for Accuracy 

for DEAP were 
73.5±8.07% and for 

DREAMER 
55.5±7.59%. 

Liu et al. 2021 
Multivariate 
time series 

classification 

Two Tower 
Transformer 

NN 
/ 

13 
different 
datasets 

The GTN achieved 
accuracy of 88.9% 

to 100% for 13 
different datasets 

Vinay et al. 2021 
Audio onset 
prediction 

RNN 
FCN 

A spectral 
flux-based 

novelty 
function 

NMED-T / 

AlShorman 
et al. 

2021 
Automatic 

mental stress 
detection 

SVM 
Naive Bayes 

FFT 

Najran 
University 

EEG 
Dataset 

Accuracy: 90-
98.21% 
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Zhou and 
Pan 

2021 
Time series 

classification 
(TSC) 

CNNs 

Discrete 
Cosine 

Transform 
(DCT 

/ / 

Qingguo Ma 
et al. 

2021 
Customer 
behavior 

prediction 

Recurrent t-
SNE Neural 

Network 
/ / Accuracy: 87% 

Varalakshmi 
et al. 

2021 
Epileptic 
seizures 

detection 
Simple ANN 

Tunable Q 
Factor 

Wavelet 
Transforma

tion 
(TQWT) 

Continuous 
Bag of 
Words 
(CBoW) 

/ Accuracy: 98% 

Hussein et 
al. 

2022 

Classification 
of preictal and 
interictal EEG 

activities 

MLP and Multi 
head attention 

Transformer 
Encoders 

CWT, and 
Transforme
r Encoders 

CHB–MIT  
Kaggle/Am

erican 
Epilepsy 
Society 
(AES) 

Dataset 
Kaggle/Mel

bourne 
University 

On the CHB–MIT 
Dataset 

Accuracy was 
99.8% and FPR of 

0.004 
 

On Kaggle/AES 
sensitivity: 90.28 

AUC Score 
Public/Private: 

0.940/0.885 

Potter et al. 2022 
Seizure 

detection 

Transformer 
Encoder, t 
Distributed 
Stochastic 
Neighbor 

Embedding (t-
SNE), 

K-means 
Clustering, and 

XGBoost 

/ 
CHB-MIT 
UPenn 

TUH 

AUC of 0.93 ± 
0.005 on the MIT 

dataset  
Outperformed 

supervised 
methods by up to 

16% recall, 9% 
accuracy, and 9% 

AUC on UPenn and 
MIT datasets 

Chowdary  
 et al. 

2022 
Emotions 

classification 
RNN, LSTM, 

and GRU 
CNNs 

EEG Brain 
Wave 

Dataset: 
Feeling 

Emotions 

An average 
accuracy of 95% for 

RNN, 97% for 
LSTM, and 96% for 

GRU for 
emotion detection 

problems is 
achieved 

Qi et al. 2022 
Epileptic 
seizures 

detection 

CNNs with 
attention 

Discrete 
Wavelet 

Transform 
(DWT) 

Bonn EEG 
database 
and Bern-
Barcelona 

EEG 
database. 

The proposed 
algorithm achieved 
98.89% accuracy in 
triple classification 
on the Bonn EEG 

database and 
99.70% accuracy in 
binary classification 

on the Bern-
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Barcelona EEG 
database. 

Jonas et al. 2022 

Diagnosis of 
Acute 

Consciousness 
Impairment 

(ACI) 

CCNs CNNs CERTA 

The accuracy for 
predicting was 54.5 
% and increased to 
67.7 %, 70.3 % and 

84.1 %, 
respectively 

Athar A. Ein 
Shoka et al. 

2022 

EEG 
classification 

with 
encryption 

CNNs (Alexnet, 
Darknet, 

GoogleNet, 
Resnet50, 

squeezenet) 

Pretrained 
CNN 

CHB-MIT 

Accuracy: 86.11 % 
and 84.72% using 
GoogleNet with 

Arnold and chaotic 
methods 

respectively. 

Alessandrini 
et al. 

2022 
Alzheimer's 

disease 
classification 

RNNs 
PCA 

RPCA 

20 subjects 
diagnosed 

with 
Alzheimer’s 

disease 
(AD). 

15 healthy 
subjects 
(Normal) 

97.9% versus 79.3% 
in the best cases 

Yan et al. 2022 
Epileptic 
seizures 

detection 

Three-tower 
Transformer 

STFT CHB-MIT 
sensitivity: 96.01%  
false positive rate: 

0.047/h 

Hao et al. 2022 TSC 

FCN, 
MLSTM, 

MLSTM-FCN,  
CNN-ATN, and 

TapNet 

/ 

40 datasets 
 28 

multivariat
e time 
series 

(MTS) and 
12 

univariate 
time series 

(UTS) 
datasets. 

The inclusion of the 
CSA module led to 

significant 
improvements in 

classification 
accuracy across 
most datasets. 

Pange et al. 2023 
Depression 
recognition 

LSTM, KNN, 
SVM, and CNN 

FFT for EEG                            
wavelet 

transform 
for ECG 

PhysioNet 
Accuracy of 84% 

for ECG signal and 
96% for EEG 

Yogarajan et 
al. 

2023 
Automatic 

seizure 
detection 

DNN 

Stationary 
Wavelet 

Transform 
(SWT) 

Bonn EEG 
dataset 

100% accuracy, 
sensitivity, 

specificity, and F1 
score, with only 

13% of the features 
used. 

Foroughi et 
al. 

2023 
Detecting 

sleep arousal 
events 

CNNs 
(Inception-
ResNet-v2) 

architecture 

Convolutio
n filters 

2018 
Challenge 

Physiobank 
sleep 

dataset 

Accuracy: 93.82% 

Siuly et al. 2023 
Automatic 

detection of 
schizophrenia 

Deep residual 
network (Deep 

ResNet) 
/ Kaggle data Accuracy: 99.23%. 
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Ying et al. 2024 
Depression 
recognition 

EDT 

Extract 
features 
from the 

frequency, 
spatial, and 

temporal 
domains of 
EEG data 

ImageNet 
Accuracy: 92.25 ± 

4.83 % 

Lee et al. 2024 
Sleep stages 
classification 

Mamba space 
model 

low-
frequency 
and high- 
frequency 
features 
through 
multi-

resolution 
CNNs 

Sleep-
EDFX, 

SHHS, and 
ISRUC-
Sleep 

The STFT Encoder 
demonstrated the 

highest 
performance 

across all datasets, 
with the exception 

of Sleep-EDFX. 
Compared to other 

SSL 

4  Conclusion 

This survey aimed to review the intervention of machine learning and deep learning, and mentioned its 
importance in many uses, including analyzing brain signals, from which many aspects appear, including 
predicting a condition before it occurs, such as epilepsy, or predicting the thoughts and behavior of humans, or 
whether an individual has Alzheimer’s, and much of that kind. This was done by using some complex techniques 
and processors to give valuable results. Among the techniques that were used was CNN because of its ability to 
capture spatial features in a very efficient way. RNN, hybrid learning, and other techniques that have the ability 
to classify and analyze were also used. It was noted in all of them that the results were good, with high accuracy 
and efficiency. Based on these conclusions, the importance of these technologies and their use and development 
must be considered further in our current reality because of the accuracy of the results. In future studies, we 
must focus on increasing the accuracy and effectiveness of networks and introducing them into more systems.
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