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Abstract

Electroencephalogram (EEG) signals provide a window through which we can view brain activity, are of great
importance for neurological diagnosis, developing Brain-Computer Interface (BCl), and cognitive neuroscience.
Despite the importance of EEG data, they being complex and non-stationary make it difficult for analysis. With
the development of machine learning (ML) and deep learning (DL) as state-of-the-art methods for decoding EEG
signals, attempting to provide optimal performance in both accuracy and computational time costs when it
comes to the problem of extreme complexity such as classification of huge dataset sizes. This paper presents a
comprehensive review of the most recent ML and DL techniques in EEG signal analysis. We examine the latest
methods — Convolutional Neural Networks (CNNs), Transformer models, Recurrent Neural Networks (RNNs),
and both hybrid and traditional architectures with their individual undertakings in tasks of seizure detection,
emotion classification, and motor imagery to evaluate each approach efficiency. Overall, the results validate the
high transformative efficacy of ML and DL in the EEG signal domain which might provide a key towards optimizing
our current knowledge of brain function, as well as serving to increase diagnostic accuracy in clinical
environments.

Keywords—Electroencephalogram, Machine learning, Convolutional Neural Networks, Transformer-Based
Models, Recurrent Neural Networks, Hybrid Architectures.

1 Introduction

Electroencephalography (EEG) is a non-invasive method of measuring brain activity, it produces a visual
representation of the electrical activity of the human brain, by taking measurements of the voltage difference
between various brain regions and graphically displaying the results over time. Known as scalp or surface EEG,
this type of standard clinical EEG uses multiple electrodes placed on the subject's scalp to detect low energy
signals which are the field potential created by the fluctuations of large groups of cortical neurons (Sherman et
al.,, 2020) and (Siuly et al., 2016). Clinical professionals use EEG extensively for diagnostic and treatment
purposes, including diagnosing various neurological conditions and abnormalities of the brain and also the
treatment of neurodegenerative diseases. For tasks such as accurately diagnosing epilepsy, the physician will
use EEG to observe the abnormal activity of the brain, which indicates an epileptic seizure, it is also used by them
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for diagnosing other disorders such as sleep disorders, dementia, Alzheimer’s disease, brain trauma, and
neurofeedback. Additionally, EEG is widely used in the applications of Brain-Computer interfaces (BCl). A path
for communication between the brain and a computer is created by BCl technology to help those with severe
neuromuscular disorders to communicate by analyzing their brain activity (Angulo-Sherman et al., 2023) and
(Sharma et al., 2024). This large number of EEG applications is a confirmation of the importance of its usage in
various settings, but along with its simplicity to use and its potential, EEG produces large amounts of data that
need to be analyzed by experts and monitored continuously, because of this, an automated signal analysis
methods have been developed, but due to the non-stationary and multi-component nature of the EEG signal,
the traditional signal analysis methods are not suitable for this task.

On the other hand, this is exactly where the machine learning and deep learning tools have appeared and been
applied. Having shown their efficiency in multiple areas, the two techniques have proven their success in working
with brain signals and have made impressive contributions to all of the areas listed above (Zhang et al., 2023).
When it comes to processing and analyzing very complicated and rich EEG data, deep learning and machine
learning systems can complete this process of extracting the types of information and patterns that are required
in an effective manner (Shoorangiz et al., 2021). This survey aims to determine and get an overview of what are
the most recent and effective approaches to the analysis of EEG data using deep learning. The research is to
examine what approaches of EEG analysis are known at present and how their performance varies in different
tasks, as well as what special architectures, pre-processing techniques, and problems can be noted in the light
of the most recent researches and developments.

2 Literature Review

In this section, we go over the most recent techniques used in EEG signal analysis based on the models used.

2.1 Convolutional Neural Network (CNN)-Based Models

The reason behind why CNN-based models are used widely in the task of EEG analysis is because they have a
good ability to learn the spatial features that exist in a signal. For example, (Dose et al., 2018) used Motor
Imagery (MI) data, with a system that uses CNN layers in addition to the traditional Fully Connected (FC) layer
for classification, to build an EEG-based system that can be used to improve rehabilitation strategies for people
with stroke, the leading cause of disability in adults.
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Figure 1: Fully Convolutional Neural Network architecture, image from (Fawaz et al., 2019)

EEGNet, a compact CNN for EEG-based brain—computer interfaces, introduced by (Lawhern et al., 2018), to
design a single CNN architecture and accurately classify EEG signals from different BCl paradigms, while
simultaneously being as compact as possible , it starts with the temporal convolution to learn frequency-specific
spatial filters and a wide variety of interpretable features over a range of BCl tasks, achieving high performance
with SP300, MRCP, and ERN datasets allowing for capturing frequency information at 2 Hz and above.

A 13-layer Deep Convolutional Neural Network (DCCN) is proposed by (Acharya et al., 2018) For detecting
normal, preictal, and seizure classes by using Z-score normalization, zero mean, and standard deviation of 1 as
pre-processing techniques for the signal before feeding it into the CNN, which consisted of three different types
of layers: convolutional layer, pooling layer, and a fully connected layer.
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In another study, (Raghu et al., 2020) aimed to classify seven types of seizures and non-seizure EEG patterns
CNNs and transfer learning. EEG signals are converted into spectrograms using Short-Time Fourier Transforms
(STFT) and then fed into the network. STFT is utilized to analyze the frequency content of nonstationary signals,
such as EEG data, over time. It can be mathematically

expressed as:

X(t,w) = fwx(r)w(r —t)e J¥Tdr )

where X (t, w) represents the STFT of the signal x(7), w(z — t) is a window function centered at time t, w is the
angular frequency, and j is the imaginary unit. Classification is performed through two methods: firstly, using 10
different pre-trained CNN networks; secondly, extracting image features utilizing the same networks followed
by Support Vector Machine (SVM) as a classifier.
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Figure 2: EEGNet architecture, image from (Lawhern et al., 2018)

A study by (Chambon et al., 2018) applies spatial filtering to enhance the signal-to-noise ratio, then uses CNNs
to capture spectral features from three modalities (EEG, Electrooculography (EOG), and Electromyography
(EMG) signals), these features are then fed to the softmax to classify sleep stages, it found that using 6 EEG with
2 EOG and 3 EMG channels and exploiting one minute of data before and after each segment which significantly
improves classification performance when a limited number of channels is available.

(Jonas et al., 2022) explored the potential of DL for diagnostic and predictive assessment based on EEG and to
analyze serious diseases and those suffering from different etiologies of ACI through EEG signals. A basic CNN
was used to predict the patient's condition. Two methods were employed to detect the decision. First, a visual
analysis of all EEGs containing epochs was classified with a certainty factor > 0.9. Second, the so-called Gradient-
weighted Class Activation Mapping (Grad-CAM) algorithm was used to highlight discriminative patterns.
(Shoka et al., 2023) built an encrypted system to classify and recognize EEG data using Chaotic Baker and Arnold
map transformation algorithms with CNNs, to protect sensitive medical EEG signals from detection. In the
proposed system, the first phase describes an automated encrypted spectral model for mapping EEG. It includes
three main modules: Signal Preprocessing and Handling (SPH) module to convert EEG signals into encoded 2D
spectral images, EEG Spectral Classification Module (E2SC) encoded to classify the encoded images using the
trained networks AlexNet, DarkNet19, GoogleNet, ResNet50, and QuesqueNet. Then, the final layers are
replaced with new layers that adapt to the new encoded dataset. Seizure Detection Assessment (SDA) module
evaluates the performance of the proposed approach with different experimental scenarios.

The study presented by (Siuly et al., 2023) aimed to solve the problem of the time-consuming traditional manual
feature extraction methods, to do that, they presented a feature extraction design based on a deep residual
network (ResNet) that consists of three stages: signal pre-processing, extraction of hidden patterns of EEG
signals, and classification by softmax layer. This design can automatically extract features from EEG signal data
with high accuracy in order to find out if a person has schizophrenia or not.

2.2 Transformer-Based Models

Transformer architectures were initially developed for Natural Language Processing (NLP) tasks, they have been
applied to EEG signal processing and they show the potential to effectively capture long-range dependencies.
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The main component in the transformer models is the use of attention mechanisms to capture temporal-spatial
dependencies in EEG data effectively and demonstrate relatively competitive performance when compared with
other methods. For example, one method proposed the Gated Transformer Networks (GTN) by (Liu et al., 2021)
is an extension of the standard transformer architecture, but here it is developed for multivariate time series
classification. Using two encoder towers to model attention and masking across step-wise and channel-wise
correlation. A step-wise encoder is used to encode temporal features by self and multi-head attention with
positional encoding used, as well as a channel-wise encoder without positional encoding to compute the
attention weights across different channels.

In a study by (Hussain et al., 2022) a Multichannel Vision Transformer (MViT) architecture was proposed to
classify preictal and interictal EEG activities. EEG segmentation and Continuous Wavelet Transform (CWT) to
convert each segment into an image-like representation known as scalograms, which are then split into fixed-
size patches and inputted into the MVIiT which consists of multiple branches, each serving as a transformer
encoder to process a distinct EEG scalogram image. The resulting features are fed into a Multi-Layer Perceptron
(MLP) for EEG classification.
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Figure 3: Framework of MVIT for multi-channel EEG feature learning, image from (Hussain et al., 2022)

A transformer-based unsupervised learning approach for seizure identification in EEG data is introduced by
(Potter et al., 2022) By reframing the problem as anomaly detection, an autoencoder involving a transformer
encoder is trained via an unsupervised loss function, incorporating a masking strategy specifically designed for
multivariate time series. The autoencoder learns meaningful latent representations from EEG recordings,
reconstructing input data with minimal error in the absence of seizures and higher reconstruction errors for
records with seizures.

In (Qi et al., 2020), the authors described an automatic epilepsy detection method by using multi-scale wavelet
analysis to decompose EEG signals into components of different frequency bands, followed by feature extraction
and CNNs with an attention mechanism for classification.
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Figure 4: Attention mechanism-based CNN, image from (Qi et al., 2020)

(Ying et al., 2024) on the other hand, emphasize the usefulness of attention mechanisms in sequence data
analysis as they investigate the use of electrophysiological methods to examine brain activity for accurate
symptom evaluation. It presents the EEG-based Depression Transformer (EDT) model, which is based on EEG
data extraction and reliably differentiates depressed people from healthy controls by identifying specific traits.
The effectiveness of the EDT model is attributed to capture depression-specific information using information
extraction and attention modules.

The study conducted by (Yan et al., 2022) highlights the design of a model to predict epileptic seizures for
patients with epilepsy. This model relied on transformer networks to extract and integrate 3D features of EEG
signals. STFT has been used to extract time-frequency information from EEG signals and automatically generate
enhanced features. It also converts the EEG signal into a two-dimensional matrix that includes time and
frequency domains. Time-frequency features were extracted from the EEG signals using the wavelet transform
tool. The seizure prediction task is completed after post-processing. Here the design will work to predict seizures
with high efficiency, and this will help a lot in maintaining the quality of life.

In (Zhou and Pan, 2021), the authors proposed Spectrum Attention Mechanism (SAM) and Segmented-SAM
(SSAM) for Time Series Classification (TSC). SAM integrates adaptive filtering into deep learning models by
transforming time series data into the frequency domain using a Discrete Cosine Transform (DCT)

DCT is employed to transform a signal into a sum of cosine functions of different frequencies. For a 1-dimensional
signal x(n) of length N, the DCT is expressed as:

N-1

Xy = Z X, COS [% (n + %) k] )

n=0

where X, is the DCT coefficient at index k, x,, is the input signal, N is the length of the signal, and k is frequency
index. The benefit of this transformation is to effectively compress the signal energy into a few coefficients.
Apply a trainable mask to filter out the noise and transform it back into the time domain. For SSAM on the other
hand, similarly divides the TC data into a number of segments to keep the time-domain characteristics by using
a heuristic strategy that applies SAM to each segment on an individual level and then combines the results, here
these results are considered as features that will be processed using a CNN.

The work of (Hao et al., 2022) proposes an improvement for deep learning networks with an additional module
called class-specific attention (CSA) which is incorporated into the feature extraction stage. It consists of
transforming the input features into keys, queries, and values, and then performing class-specific feature
importance calculations for each feature. To highlight all the unique class features, this module utilizes class
differentiation element, the generated attention weights are then used to modulate the features and as a result,
increase the emphasis on useful class-specific information.
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2.3 Recurrent Neural Network (RNN)-Based Models

To process best the sequential data like natural language, time-series data, and EEG, the RNN-based models are
employed, specifically Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), In addition, the RNN
networks are capable of capturing and modeling effectively the temporal dynamics of EEG signals and enabling
accurate classification of emotional states and abnormal EEG patterns and other useful EEG patterns. A general
form of an RNN calculates the state at time t and the hidden state h;,_; from previous time step based on x;
which represents the input, the h; is hidden state at time step t and the output o, is computed from the hidden
state h;
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Figure 5: Structure of an RNN block, image from (Alessandrini et al., 2021)

For a time series data {x;, X,, ..., X; }, the hidden state h, at time step t is computed as:

he = f(Wyphe_y + Vixe + by) (3)
Here, the input at the time t is represented by x; and h;_; is the hidden state from previous time step, V and
W considered as the weight matrices for the hidden layers, b is the bias for the hidden and output states, and f
is the activation function (tanh or ReLU). The output o; is calculated as:

o, = f(h, + b,) “)
where f is the output function (a softmax function or other activation function).

The LSTM cell consists of several gates which the purpose of is regulating the flow of information in modeling
long sequences. Mathematically, the LSTM cell operations are defined as follows:
For a time series data {x, x5, ..., X;}, the LSTM cell computes the forget gate as:

fe = U(Wfo X+ Wi fhey + bf) &)
the input gate is defined as :
i =o(Wi-x + Wii-hey+b) (6)

and the candidate cell state is defined as:

¢ =tanh tanh Wl c - x, + Wic - h,_y + b.) 7

where We, Wi, and W, considered as weight matrices, bf,bi, and b, are biases, o is the sigmoid activation
function, and tanh is the hyperbolic tangent function. Then, the cell state is updated as:

¢ =ftOc1+i; O (®

where c;_4 is the previous cell state and (O denotes element-wise multiplication. The output gate is computed
as:

It = U(M/;ch “Xe t+ W{g “he g + bg) )
and the hidden state is updated as:

0¢, by = g¢ O tanh (c,) (10)

where W, and b, are the weight matrix and bias for the output gate, respectively (Alessandrini et al., 2021).
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Figure 6: LSTM cell unit, image from (Alessandrini et al., 2021)

Roy et al. proposed a network called ChronoNet to identify abnormal brain activity in the TUH dataset, the
network combined Conv1D layers that included multiple filters with exponentially changing lengths, following
that, stacked layers of GRUs connected in a feedforward way using skip connections, where these connections
will guide the network to ignore some GRU layers where the demand of model complexity is less required by
the data (Roy et al., 2019). In a study after that by (Chowdary et al., 2022), the authors tried to classify emotions
using different RNNs on the EEG Brain Wave Dataset with three different emotional states, positive, negative,
and neutral. They applied three RNN models which are RNN, LSTM, and GRU where all three are trained using
Adam optimizer with sparse categorical cross-entropy as a loss function.

EEG Brain Wave Data set

|

Sequence Data

RNN LSTM GRU

Performance
analysis

Figure 7: Emotion Recognition from EEG Signals Using RNN, image from (Chowdary et al., 2022)

(Ma et al., 2021) proposes a recurrent t-distributed Stochastic Neighbor Embedding (t-SNE) neural network
model to predict customer decision-making behavior in the market field. This was done by implementing the t-
SNE algorithm to extract features, and then a recurrent neural network is created with an LSTM layer. SoftMax
was used for feature training and EEG signal classification. This model could predict customers’ thinking well.
The study conducted by (Alessandrini et al., 2022) confirmed the development of a method for automatic
classification of incomplete or corrupted data. The Robust Principal Component Analysis (RPCA) algorithm was
used with an RNN for classification. This network was used with corrupted data as outliers and was processed
during RPCA to remove outliers from the signal for diagnosing Alzheimer's disease (AD). Even with corrupted
data, they confirmed that the accuracy increased by about 5% with respect to the Robust Principal Component
(RPC) that was tested on the RNN with EEG data, which was correctly processed through traditional PCA.
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2.4 Deep Learning Models Based on Hybrid Architectures

The applications of one model for learning spatial features (such as CNN-based models) and another in
processing the temporal characteristics of a signal (such as an RNN-based model) may constrain their capacity
to process and understand both spatio-temporal patterns of EEG signals that vary in time domain and frequency
domain. Consequently, some of the researchers began to combine a variety of models and architectures
together to take benefit from their strengths. The authors, for example, (Spampinato et al., 2017) followed a
two-stage approach where they intended to investigate how well we can express human visual capabilities using
both RNN and CNN models. In the first stage, the RNN is used as an encoder trained to learn the temporal
features of raw EEG evoked by a subject looking at an image, and using a CNN-based regression in the second
stage to project images into the learned features manifold representation.

Another research was done by (Xu et al., 2020), in which a One-Dimensional Convolutional Neural Network-Long
Short-Term Memory (1D CNN-LSTM) model was proposed to detect epileptic seizures by analyzing the EEG signal
with high accuracy and timeliness. This model is done by pre-processing the EEG signal data and then designing
a one-dimensional CNN to extract data features. To process these extracted features, LSTM layers are used.
Then, the output features are fed to several fully connected layers for final seizure recognition. A three-pass
hybrid deep learning system presented by (Golmohammadi et al., 2019), its objective was to identify significant
clinical patterns in the TUH dataset by extracting features from the data using Linear Frequency Cepstral
Coefficients (LFCCs) and processing them through their proposed system that captures the temporal features in
the first stage using Hidden Markov Models (HMMs), followed by spatial and temporal context analysis using
Stacked Denoising Autoencoders (SdAs), and a statistical language model at the end to enhance the accuracy of

EEG event classification.
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Figure 8: A three-pass architecture for automatic interpretation of EEG, image from (Golmohammadi et al., 2019)

NeuroNet described in (Lee et al., 2024), is ahybrid self-supervised learning framework for sleep stage
classification using single-channel EEG, combining NeuroNet with the mamba-based temporal context module
with Sleep-EDFX, SHHS, and ISRUC-Sleep datasets, demonstrated the highest performance across all datasets,
with the exception of Sleep-EDFX. Compared to other SSL. The use of NeuroNet exceeds most recent supervised
learning methods, even with minimally labeled data. Furthermore, it uses multi-resolution CNNs to extract
features from both high- and low-frequency EEG data, and STFT Encoder performs admirably on most datasets.
Sanchita et al. used electrocardiogram (ECG) and EEG data analysis to identify and evaluate depression. The
primary characteristics examined in the brain signal are band power alpha, entropy, standard deviation, and
Hjorth activity (HA). Performance was enhanced by combining the CNN, KNN, and SVM classifiers with the LSTM
autoencoder model. After preprocessing the signal to eliminate artifacts, the RNN learned the data then sent it
out for further training by the LSTM autoencoder while a minimal test was done in the end for categorizing and
predicting depression (Sanchita et al., 2023).

A hybrid deep learning approach for detecting sleep arousal events has been demonstrated in (Foroughi et al.,
2023). To begin with, this technique requires separating the signal in the Discrete Wavelet Transform (DWT) and
further windowing for simplification. After that, the combined feature extraction is performed by Inception-
ResNet-v2 structure and classification by SVM. To optimize the SVM, Gray Wolf Optimization method is used.
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A machine learning system was presented by (Yogarajan et al., 2023) to analyze EEG patterns and detect seizure-
indicative asymmetry. They derived the statistical and Hjorth parameters of signals decomposed using the
Stationary Wavelet Transform (SWT). To identify essential characteristics of SWT-compressed data that are vital
for further classification with Deep Neural Networks (DNNs), the Binary Dragonfly was proposed.

Varalakshmi et al. present an approach to predict epileptic seizures, which involves decomposing EEG signals
using Tunable Q Factor Wavelet Transformation (TQWT), extracting statistical, temporal, and global features.
Techniques like Continuous Bag of Words (CBoW) and dimensionally reduced using autoencoders are applied to
extract temporal features, while global features are Identified using PCA across different sub-bands of the signals
to identify the signals, a basic Artificial Neural Network (ANN) is employed (Varalakshmi et al., 2021).

2.5 Traditional Machine Learning Models

In the examination of EEG rhythms, standard BClI, traditional methods are used, like SVM, KNN and Naive Bayes
(NB). For tasks such as mental stress detection, a study by (AlShorman et al., 2022) aimed to use Fast Fourier
Transform (FFT) as a feature extraction stage, along with applying SVM-assisted learning classifiers to achieve
high accuracy in detecting mental stress accurately using frontal lobe and total EEG signals. The posterior
probability of the prior, the predictor probability of the target, and the prior probability of the predictor were
also computed using NB, which offers a Bayes hypothesis. This approach is simple and may be utilized as a real-
time and continuous monitoring technique for medical purposes.

(Bashivan et al., 2016) investigated robust representations of EEG data. Data is transformed into a sequence of
multispectral pictures that preserve topology. They used different techniques, such as SVM, Deep Belief
Networks (DBN), Random Forest Ensemble, and Logistic Regression, to determine which hyperplane best splits
data points into discrete groups. Furthermore, Jang et al attempt exact EEG classification. DEAP and DREAMER
were the two EEG datasets for emotional and psychological states used by the scientists who did not employ
Graph Neural Networks (GNN) but only conventional approaches. The algorithms used were Spatial-Temporal
Graph Convolutional Network (ST-GCN), ChebNet, and Deep Graph Convolutional Neural Network (DGCNN)
among others. KNN, SVM, Recurrent Attention Convolutional Neural Network (RACNN) were among the
methods applied for data analysis. Besides this model showed significantly better performance when compared
to its own version that did not learn graphs (Jang et al., 2021).

(Abdullah et al., 2019) searched different classification algorithms for analyzing data related to epilepsy. It
utilized the Hilbert-Huang Transform (HHT) for purpose of data extraction, also it uses the Gaussian Deep
Boltzmann Machine (GDBM) for classification purpose. GDBM exhibits the highest accuracy as if it compared to
SVM, NB, and logistic regression.
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Figure 9: Overview of the approach by (Bashivan et al., 2016)

Finally, (Savadkoohi et al., 2020) concerned the implementation of feature extraction and selection in three
domains: time, frequency, and time-frequency. EEG signals were filtered using a third-order Butterworth
bandpass filter for the time-domain aspects, and statistical characteristics such as mean, skewness, variance and
kurtosis were extracted from five brain wave categories, which are: Delta, Theta, Alpha, Beta, and Gamma.
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Fourier and Wavelet Transforms were used to extract features related to both frequency and time-frequency
features resulting in a total of 60. feature selection was performed using the T-test and Sequential Forward
Floating Selection (SFFS), the selected features were then fed into SVM and KNN for classification.

3 Discussion of Previous Findings

In the previous section, we discussed various machine learning algorithms which were developed by many
researchers to find ways that would help improve the accuracy and reliability of diagnostic tools for categorizing
EEG signals. Below we state and discuss the outcomes from the previously mentioned studies which introduced
different ML and DL models that demonstrate their applicability in this area. Many studies highlight the
effectiveness of RNN and hybrid models in EEG classification. Roy et al. achieved accuracies of 90.60% and
86.57%, on the TUH Abnormal EEG Corpus surpassing previous accuracy benchmarks by 1.17% showcasing the
efficacy of using Conv1D and GRU layers. Chowdary et al. reported LSTM at 97% accuracy, GRU at 96%, and RNN
at 95% for classifying emotional states. Vinay et al. showed promising results with RNNs, while Spampinato et
al. combined RNNs and CNNs to achieve 83% accuracy. Alessandrini et al. demonstrated 97.9% accuracy using
PCA. Whereas the results related to CNN models are varied. For example, Raghu et al. 's Inceptionv3 obtained
an 88.30% accuracy while Chambon et al. utilized spatial filtering and CNNs to advance sleep stage classification.
Onthe other hand, Qi et al. acquired 98.89% for triple and 99.70% for binary classification accuracies respectively
in Bonn and Bern-Barcelona datasets although EEGNet has been shown to have good performance with all BCI
paradigms.

Other studies show the effectiveness of transformer-based and hybrid models in the analysis of EEG data. Using
the CHB—MIT dataset, Hussein et al. employed MVIT to achieve over 99% sensitivity, specificity, and accuracy
with a low false positive rate. Yan et al. predicted epileptic events with a sensitivity of 96.01% and a low rate of
false positives. By integrating attention mechanisms with EEG data, Ying et al. succeeded in classifying
depression with high accuracy. High precision was achieved by Xu et al. in binary and multi-class tasks related to
seizures. More than 90% of neurological diseases were identified by Golmohammadi et al. Using hybrid
architectures, Lee et al. were able to successfully capture temporal relationships. Pange et al. used an LSTM
autoencoder and achieved 97% accuracy. Employing integrated RNNs with CNN, Spampinato et al. were able to
recognize cognitive tasks with an accuracy of almost 83%.

However, other results which are related to SVM methods show that AlShorman et al. achieved accuracies
between 90% and 98.21% using SVM classifiers, showcasing robust performance. Savadkoohi et al. compared
SVM and KNN classifiers, with SVM demonstrating superior accuracy of 100% accuracy, sensitivity, and
specificity.

Lastly, other studies showed high performances using different models and techniques, for example, Acharya et
al. achieved an accuracy of 88.67%, along with sensitivity and specificity rates of 95.00% and 90.00%,
respectively, for seizure detection. Potter et al. achieved an AUC of 0.93 + 0.005 on the MIT dataset, highlighting
strong performance. Liu et al. 's GTN achieved accuracies ranging from 88.9% to 100% across diverse datasets.
Foroughi et al. achieved an average accuracy of 93.82%, ensuring computational efficiency gains. Abdullah et al.
reported 100% accuracy using GDBM, for demonstrating significant diagnostic potential. Shoka et al. achieved
accuracies of 86.11% and 84.72% using GoogleNet with Arnold and Chaotic methods, respectively. Zhou and
Pan's SSAM-CNN model showed superior performance over traditional and deep learning methods. Jang et al.
achieved accuracies of 73.5% + 8.07% for DEAP and 55.5% + 7.59% for DREAMER. and Varalakshmi et al.

improved the accuracy using their methodologies, achieving accuracies up to 98% with ANN classifiers.
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Extract
features
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. Depression frequency, Accuracy: 92.25 +
Ying etal. 2024 recognition EDT spatial, and ImageNet 4.83%
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EEG data
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4 Conclusion

This survey aimed to review the intervention of machine learning and deep learning, and mentioned its
importance in many uses, including analyzing brain signals, from which many aspects appear, including
predicting a condition before it occurs, such as epilepsy, or predicting the thoughts and behavior of humans, or
whether an individual has Alzheimer’s, and much of that kind. This was done by using some complex techniques
and processors to give valuable results. Among the techniques that were used was CNN because of its ability to
capture spatial features in a very efficient way. RNN, hybrid learning, and other techniques that have the ability
to classify and analyze were also used. It was noted in all of them that the results were good, with high accuracy
and efficiency. Based on these conclusions, the importance of these technologies and their use and development
must be considered further in our current reality because of the accuracy of the results. In future studies, we
must focus on increasing the accuracy and effectiveness of networks and introducing them into more systems.
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