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Abstract 

         In this paper, the large amplitude of free vibration and buckling of Euler–

Bernoulli beam rests on a non-linear elastic foundation subjected to an axial force are 

studied. Hamilton’s principle is followed to derive governing equation of the beam 

response. Using an analytical method based on the Galerkin technique, the nonlinear 

governing equations of motion was simplified to a time-dependent Duffing equation 

with cubic nonlinearities and then solved using Laplace Iteration Method. 

Comparison between results of the present work and those available in literature 

review shows reasonable agreement of this method. Effects of vibration amplitude, 

elastic coefficients of foundation and axial force on the non-linear natural frequencies 

and buckling load of beams are presented. Results reveal that decreasing linear and 

shear parameters and increasing nonlinear parameters of foundation lead to increasing 

frequency ratio and buckling load ratio. Furthermore, increasing axial force decreases 

absolute values of both linear and nonlinear frequencies as well as natural frequency 

ratio. 
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 غير هرى أسبش على هسٌذة ضغط هحىريت  لقىة هعرضت لعبرضت  الكبيرة السعت الذيٌبهيكيت

          خطي

 الخلاصت

ثشٌٟٔٛ ِغزمشح ػٍٝ -فٟ ٘زا اٌجؾش رُ دساعخ  اٌغؼخ اٌؼب١ٌخ ٌلا٘زضاص اٌؾش ٚالأجؼبط ٌؼبسػخ ا٠ٍٚش

ِجذا ٘بٍِزْٛ فٟ اشزمبق اٌّؼبدٌخ اٌؾبوّخ لاعزغبثخ اعزخذَ اعبط ِشْ غ١ش خطٟ ِؼشع اٌٝ لٛح ِؾٛس٠خ. رُ 

للحركة  الحاكمة خطية غيرال المعادلات رجغ١ؾ رُ , Galerkin  تقنية إلى استنادا التحليلي الأسلوب استخدماٌؼبسػخ. 

دفٕظ  اٌّؼزّذح ػٍٝ اٌضِٓ ِٓ اٌذسعخ اٌضبٌضخ ٚاٌغ١ش خط١خ ٚثؼذ رٌه رُ ؽٍٙب ثبعزخذاَ  ؽش٠مخ    الى معادلة
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توافق  يات اظهرت الأدب في المتاحة تلك و التي تم الحصول عليها في هذه الدراسة نتائجال مقارنةلاثلاط ٌٍزىشاس. 

ِؼبًِ ِشٚٔخ الاعبط ٚاٌمٛح اٌّؾٛس٠خ  ػٍٝ اٌزشدداد  ,. ربص١شاد وً ِٓ عؼخ الا٘زضاص هذه الطريقة معقول ل

 ٚ اٌخط١خ بِلاداٌّؼ خفغ ؤْث اٌطج١ؼ١خ  اٌلاخط١خ ٚؽًّ الأجؼبط ٌٍؼبسػخ رّذ دساعزٙب. إٌزبئظ ث١ٕذ

ثبلاػبفخ اٌٝ . ٔغجخ الأجؼبط ٚ اٌزشدد ٔغجخ ص٠بدح إٌٝ ادد ٌلأعظ اٌخط١خ اٌلا اٌّؼبِلاد ٚص٠بدح اٌمضِؼبِلاد 

 اٌزشدد ٔغجخ ٚوزٌه اٌخط١خ ٚغ١ش اٌخط١خ اٌزشدداد ِٓ ىًٌ اٌّطٍمخ اٌم١ُ لٍٍذ اٌّؾٛس٠خ اٌمٛح ص٠بدح ,رٌه

 . اٌطج١ؼٟ

 كلوبث هرشذة 

طريقت  ؛كبرلكي طريقت ؛ الوروًت اسبش لا خطي ؛ برًىلي-لراوي الاًبعبج؛عبرضت الخطي؛ الاهتسازالغير

 التكراريت. لابلاش

1-Introduction 

      Beam is one of the important mechanical elements and has numerous applications 

in different fields of engineering and industries such as civil, marine and aerospace 

structures or vehicles.  

In most applications, they are subjected to non-linear vibrations which lead to 

material fatigue and structural damage due to increment of the oscillation amplitude 

[1]. Therefore, it is necessary and very important to study dynamic nonlinear behavior 

and natural responses of these structures at large amplitudes. Many investigations 

have been reported on the linear, non-linear vibration and buckling of Euler-Bernoulli 

beams with and without an elastic foundation. Lai et al. [2] utilized Adomian 

Decomposition Method to obtain the natural frequencies and mode shapes for the 

Euler- Bernoulli beam under various supporting conditions. Non-linear vibration 

behavior Euler-Bernoulli beams subjected to axial load using homotopy analysis 

method (HAM) is investigated by Pirbodaghi et al. [3]. Barari et al. [4] studied non-

linear vibration behavior of geometrically non-linear Euler-Bernoulli beams using 

variational iteration method and parameter perturbation method. Non-linear vibration 

Euler-Bernoulli beams subjected to axial load using He’s variational approach (VA) 

and Laplace iteration methods (LIM) is studied by Bagheri et al. [5]. Analysis of the 

nonlinear free vibration of simply-supported and clamped-clamped Euler-Bernoulli 

beams fixed at one end subjected to the axial force using Hamiltonian approach is 

presented by Bayat et al. [6]. Nonlinear vibration analysis of isotropic beams with 

simple end conditions has been investigated by Kargarnovin and Jafari [7]. They have 

used the HAM to obtain closed-form solutions for natural frequencies and beam 

deflection. Liu and Gurram [8] investigated the free vibration of Euler-Bernoulli beam 
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under various supporting conditions using a variational iteration method. Nonlinear 

analysis for simply supported beam resting on a two-parameter elastic foundation is 

presented by Hui-Shen [9]. The large amplitude free vibration of uniform beams on 

Pasternak foundation using the conservation of total energy principle is presented by 

Venkateswara [10]. The LIM method which was introduced by Rafieipour et al. [11] 

is a very powerful method in solving non-linear differential equations and its 

effectiveness is proved in studying non-linear vibration of composite plate. It was 

shown that this is one of the best analytical methods due to the rate of convergence 

and its accuracy. 

The objectives of the present paper are to use the Laplace Iteration Method to obtain 

approximate analytical solutions for large amplitude dynamic of Euler–Bernoulli 

beam subjected to a compressive axial force resting on non -linear elastic foundation 

and to study the influence of different parameters on the frequency and post-buckling 

loads of the beam.  

2. Theoretical formulation 

       A simply supported beam with uniform cross section made of a homogenous 

isotropic material with negligible damping is considered. The beam is supported on an 

elastic foundation with cubic nonlinearity and shearing layer as shown in Fig.1. The 

beam is modeled according to Euler Bernoulli beam theory. Planes of the cross 

sections remain planes after deformation, straight lines normal to the midplane of the 

beam remain normal, and straight lines in the transverse direction of the cross section 

do not change length, [4] 

 

 

 

 

 

Fig. 1: A schematic of an Euler-Bernoulli beam subjected to an axial load resting on 

non -linear    elastic foundation 

 

Based on the Euler–Bernoulli beam theory, the nonlinear strain–displacement 

relations of the beam with the axially immovable ends are given by, [14] 
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where u is the longitudinal displacement, w  is the lateral displacement and
x

k is the 

curvature of the beam, respectively.  In this study, the equations of motion are derived 

by using Hamilton’s principle. This principle can be expressed as, [12] 

                        0)]([
0

 dtWUK
s

t

e
                                                 )3(  

In equation (5), 
e

K  is the kinetic energy, 
s

U is the elastic strain energy and  
.ext

W is the 

work done by the external applied forces and these are given by, [10,12 ] 
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Applying the Extended Hamilton’s principle [12], the governing equation of 

transverse vibration of beam including axial stretching on a nonlinear elastic 

foundation can be obtained as: 
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For convenience, the following non-dimensional variables are used: 

         LxX / , rwW / , 2/14
)/( mLEItt  ,  )/( AIr  ,     

  
)6(

 

As a result equation (5) can be written as follows: 

      
0)()(

2

1

2

2

3

0

2

2

2

2

2

4

4

2

2































X

W
KWKWKdx

X

W

X

W

X

W
P

X

W

t

W

SNLL

l

       
)7(  

In which: 

         EIpLP /
2

 ,   EIkLK
L

/
4

  , EILkK
NLNL

/
6


,      

EILkK
SS

/
2


   

)8(
 

Assuming )()(),( xtqtXW   where )( x is the first normal mode of the beam [16] 

and using the Galerkin method, the governing equation of motion is obtained as 

follows:
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where coefficients 
i

  are presented in Appendix A. The beam centroid is subjected to 

the following initial conditions, [3] 

                  max
)0,( Wxq   0

)0,(


dt

xdq

                                                
)11(  

From equation (10), the Post-buckling load–deflection relation of the beam can be 

obtained as:
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It should be noted that neglecting the contribution of q  in equation (16), the linear 

buckling load can be determined as, [17] 

                     2

1
)(




SL

KK

crL
PP




                                           

)13(  

Equation (10) is strongly nonlinear and nobody can find an exact analytical closed 

form solution for )( tq  and
NL

 . Although numerical methods can be implemented to 

get over this problem but, they cannot offer any suitable way for parametric study. 

Therefore, it will be valuable if a powerful analytical approximate method exists that 

presents an accurate approximation of )( tq  and 
NL

  while providing the ability to 

parametric study of the problem. 

 

3- Description of the proposed method 

Using the Laplace Transformation method, an analytical approximated technique is 

proposed to present an accurate solution for nonlinear differential equations. To 

clarify the basic ideas of proposed method consider the following second order 

differential equation [11], 
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With artificial zero initial conditions and N is a nonlinear operator. Adding and 

subtracting the term )(
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tu , equation (14) can be written in the form 
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where L is a linear operator.  After taking Laplace transform of both sides of the 

equation (15) in the usual way and then implementing the Laplace inverse transform 

by using the Convolution theorem yields: 
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Now, the actual initial conditions must be imposed. Finally the following iteration 

formulation 

can be used, [13] 
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Knowing the initial approximation 
0

u  , the next approximations, ,
n

u      can be 

determined 

from previous iterations. Consequently, the exact solution may be obtained by using 

                       
n

n

uu lim




                                                                         
)18(  

The method proposed here can be applied in various non-linear problems.  However, 

there is no 

need for any linearization and any small parameter, also, the obtained approximate 

solutions converge quickly to the exact one. 

 

4-Implementation of the proposed method 

   Rewriting equation (10) in the standard form of equation (15) results in the 

following equation: 
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Applying the proposed method, the following iterative formula is formed as:

 
 

                   
  


 dtN

nn

t

n
))(sin())())(((

1

0

2

01
 

                           
)21(

                                                                                                                                                    
 

Equation(19) will be homogeneous, if left side of this equation is considered to be 

zero. So, it’s homogeneous Solution 
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is considered as the zero approximation for using in iterative equation (21) 

Expanding  0
( )f   we have: 
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The coefficient of the term co s( )t  in  0
( )f   should be vanished in order to avoid 

secular terms in subsequent iterations.  

As a result, the nonlinear natural frequency of the motion can be expressed as: 
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Then, the nonlinear to linear frequency ration can be determined as: 
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and, the zero-order approximate solution can be easily determined as:  
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5-Results and discussion 

          In order to demonstrate the accuracy and effectiveness of the LIM, The 

procedure explained in previous section is applied to simply supported and clamped 

beams. Table 1 shows the comparison of non-linear to linear frequency ratio (
LNL

 /

) with those reported in the literature. It can be observed that there is a reasonable 

agreement between the results obtained from the LIM and those reported by Ref’s [14 

and 15]. By increasing the amplitude of vibration the difference between the non-

linear frequency and linear frequency increases. In general, large vibration amplitude 

will yield a higher frequency  
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Table 1 Comparison of nonlinear to linear frequency ratio (
LNL

 / ) 

 

Boundary condition 
max

W  Ref. [14] Ref. [15] Present 

Study 

 
Simply supported 1 1.0897 1.0891 1.0897 

 2 1.3229 1.3228 1.3228 

 3 1.6394 1.6256 1.6293 

Clamped-clamped 1 1.0552 1.0572 1.0551 

 2 1.2056 1.2125 1.2056 

 3 1.3904 1.4344 1.4214 
 

The exact nonlinear frequency )(
ex

 of Duffing equation (10) can be determined as 

[18]: 
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The another verification attempt,  frequency ration obtained by equation (25) for 

versus dimensionless amplitude is compared with the results obtained from exact 

frequency ratio using equation (28), as shown in Table (2). A reasonably good 

agreement with exact solution for nonlinear analysis of beam can be observed.  

Table 2: Comparison of nonlinear to linear frequency ratio (
LNL

 / ) 

 

a Present Study Exact Relative Error 

0 1.0000 1.0000 0.000 

1 1.0233 1.0213 0.002 

2 1.0882 1.0863 0.019 

3 1.1891 1.1871 0.002 

4 1.3175 1.3167 0.008 

5 1.4662 1.4658 0.004 
 

The effect of the elastic foundation coefficients and axial force on the nonlinear 

natural frequency and post-buckling behavior of simply supported beams is studied. 

The figures (2-5) demonstrate effects of foundation parameters, linear )(
L

K , shear 

)(
S

K and nonlinear )(
NL

K for simply supported beam. In all figures, the 

dimensionless frequency ratio )/(
LNL

 and dimensionless nonlinear to linear 

buckling load ratio )/(
LNL

PP  versus dimensionless amplitude are presented. It is 

worth mentioning that (
NL

P ) is determined by maximizing equation (12) in one period 
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of vibration. It can be concluded from figures (2, 3) together with Table (3) that an 

increase in the value of linear elastic foundation stiffness and shearing 

layer stiffness results in decreasing hardening characteristic of the beam 

i.e. decrease in the rate of increase in the nonlinear frequency and post-

buckling strength with amplitude. Whereas it is shown in figure (4) that an 

increase in the value of nonlinear elastic foundation stiffness has inverse 

results on the nonlinear frequency and post-buckling strength i.e. the rate 

of increase in these figures enhances with an increase in nonlinear 

foundation stiffness. The results might be explained by writing  frequency ratio 

based on equation (26) as: 
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Considering the fact that  is a function on both linear and shear stiffness of the 

foundation while  remain constant. This yields to decreasing frequency ration by 

increasing 
L

K  and
S

K . On the other hand, however the effect of nonlinear stiffness 

coefficient of the foundation appears only in  which results in increasing the 

frequenacy ratio. 

                     

 

           

 

 

Fig.2: Effects of the shear foundation stiffness on the frequency and post-buckling load-

deflection. 
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Fig.3: Effects of the linear foundation stiffness on the frequency and post-buckling load-

deflection. 

Table 3: Comparison of nonlinear frequency (
NL

 ) and nonlinear to linear 

frequency ratio   (
LNL

 / ) with change of different factors for beam, a=2. 

                Nonlinear natural frequency Nonlinear to linear frequency              

P KL KNL KNL 

  0 100 0 100 

  KS KS KS KS 

  0 25 0 25 0 25 0 25 

0 0 10.227 18.749 17.564 23.564 1.0373 1.0106 1.779 1.2702 

 50 12.447 20.038 18.935 24.602 1.0277 1.009 1.559 1.239 

5 0 5.609 17.383 16.099 22.493 1.0742 1.0124 2.322 1.31 

 50 10.269 18.767 17.583 23.577 1.0368 1.0106 1.776 1.269 

           

The effect of initial and pre-buckled non-dimensional axial force on the nonlinear 

natural frequency is shown in figure (5). It can be concluded that the values of 

nonlinear frequency decrease with increase in the axial force, whereas nonlinear to 

linear frequency ratio enhances with an increase in the axial force value. 

                          

  

 

 

Fig.3: 

Effects of the non- linear foundation stiffness on the frequency and post-buckling load-

deflection. 

 

 

 

 

    

 

                 Fig.5: Effects of the axial load on the frequency ratio of the beam 

 
Thi-Qar University Journal for Engineering Sciences, Vol. 5, No.1 2014 



 

111 

 

Thi-Qar University Journal for Engineering Sciences, Vol. 4, No.4 2013 

 

6- Conclusions 

           Laplace Iteration Method is used to obtain the analytical expressions for the 

nonlinear free vibration of an Euler-Bernoulli beam on a nonlinear elastic foundation 

subjected to axial compressive force. The influence of foundation stiffness parameters 

and initial pre-buckled axial load on the nonlinear natural frequency and post-

buckling load-deflection has been investigated. Based on a detailed study, the 

following observations are made: 

1- The influence of linear and shear layer stiffness parameters is to decrease the 

nonlinear behavior of the beam, whereas the nonlinear layer stiffness of the 

foundation increases the strength of the nonlinearity. 

2- The rate of increase in nonlinear to linear natural frequency and post-buckling to 

critical load ratios is very low at small amplitudes. However, as the amplitude 

increases, the effect of nonlinearity on these parameters becomes significant. 

4-The nonlinear to linear frequency ratio enhances with an increase in the value of the 

axial force, whereas the values of nonlinear frequency decrease. 

5-Laplace Iteration Method provides the ability for parametric study of the considered 

problem. Results revealed that the presented method offers accurate solution with 

low computational effort. 

6- Comparison between the results of the present study and other methods available in 

the literature shows the accuracy of the method. 

Appendix A: 

         

 


l

l

dx

dx

0

2

0

1




   ,  



 


l

l

dx

dx

0

2

0

2




     ,   



 


l

l

SK

dx

dx

K
S

0

2

0




  

          




l

l

NLK

dx

dx

K
NL

0

2

0

4





   ,    



  


l

l l

dx

dxdx

0

2

0 0

2

3
5.0




  ,     LK

K
L

    

 

References 

 
Thi-Qar University Journal for Engineering Sciences, Vol. 5, No.1 2014 



 

112 

 

Thi-Qar University Journal for Engineering Sciences, Vol. 4, No.4 2013 

[1] M.T. Ahmadian, M. Mojahedi, H. Moeenfard, (2009). “ Free Vibration Analysis 

of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare 

Methods” J. of Solid Mechanics Vol. 1, pp.29-36. 

 [2] Lai, H.Y., Hsu, J.C., Chen, C.K., (2008). “An  innovative eigenvalue 

problem solver  for  free  vibration of Euler- Bernoulli beam  by  using  the 

Adomian Decomposition  Method”,  Computers  and  Mathematics  with  

Applications, 56, 3204-3220. 

[3] T. Pirbodaghi, M. T. Ahmadian, M. Fesanghary , (2009) “ On the homotopy 

analysis method for non-linear vibration of beams” Mechanics Research 

Communication,  36, 143-148. 

[4] A. Barari, H.D.Kaliji, M.Ghadimi and G. Domairry , (2011) “ Non-linear vibration 

of Euler-Bernoulli beams’’ Latin American Journal of Solid and Structure” 8,  

139-148. 

[5] S. Bagheri, A. Nikkar , H. Ghaffarzadeh , (2014) “Study of nonlinear vibration of 

Euler-Bernoulli beams by using analytical approximate techniques” Latin 

American Journal of Solids and Structures 11,157 – 168. 

 [6] M. Bayat, I. Pakar and M. Bayat, (2013) “ On the large amplitude free vibration 

of axially loaded Euler-Bernoulli beams” Steel and Composite Structure, 14(1) , 

73-83. 

[7] Kargarnovin, M.H., Jafari-Talookolaei, R.A. (2010) “Application of the 

homotopy method for the analytic approach of the nonlinear free vibration 

analysis of the simple end beams using four engineering theories” Acta 

Mechanics. 212, 199–213.  

[8] Liu, Y., Gurram, C. S., (2009)” The use of He’s variational iteration 

method for obtaining the free vibration of an Euler-Beam beam” Math. 

and Computer Modelling 50:1545-1552. 

[9] Hui-Shen Shen, (2011)” A novel technique nonlinear analysis of beams on two-

parameter elastic foundation”  Int. J. of Structural Stability and Dynamics, 11(6), 

999-1014. 

 [10] G. Venkateswara Rao, (2003) ” The large amplitude free vibration of uniform 

beams on  Pasternak foundation” Journal of Sound and Vibration, 263, 954-960. 

[11] Rafieipour, H. , Lotfavar, A.  , Masroori, A., Mahmoodi, E.,( 2013) “Application 

of Laplace iteration  method to study of nonlinear vibration of laminated 

 
Thi-Qar University Journal for Engineering Sciences, Vol. 5, No.1 2014 



 

113 

 

Thi-Qar University Journal for Engineering Sciences, Vol. 4, No.4 2013 

composite plates Latin American Journal of Solids and Structures , 10(4), 781-

795. 

 [12] S. S. Rao., (2007) “ Vibration of Continuous Systems” John Wiley &Sons, Inc., 

Hoboken, New Jersey. 

[13] E. Hesameddini and H. Latifizadeh, (2009) “Reconstruction of variational 

iteration algorithms using the Laplace transform “Int. J. Nonlinear Sci. 

Numerical. Simulation, 10(10), 1365-1370. 

 [14] R.K. Gupta, Gunda Jagadish Babu ,G. Ranga Janardhan ,G. Venkateswara 

Rao,(2009) “Relatively simple finite element formulation for the large amplitude 

free vibrations of uniform beams” Finite Elements in Analysis and Design, Vol. 

45, Issue 10, pp. 624–631. 

[15] Emam SA., Nayfeh AH. (2009), “Postbuckling and free vibration  of composite 

beams” J. of  Computer  and Structure Vol. 88,pp. 634-642. 

[16] Azimi M. and Kariman S. (2013), “Periodic Solution for Vibration of Euler-

Bernoulli Beams Subjected to Axial Load Using DTM and HA” J Appl Mech 

Eng 2:2 http://dx.doi.org/10.4172/2168-9873.1000125 

 [17] I. Pakar and M. Bayat (2013), “An Analytic Study of Nonlinear Vibrations of 

Buckled Euler-Bernoulli Beams” J. of Acta Physica Polonica A, Vol. 123 , pp. 

48-52. 

[18] Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M., (2010)  “Frequency 

analysis of strongly nonlinear generalized Duffing oscillators using He's 

frequency-amplitude formulation and He's energy balance method” Computers 

and Mathematics with Applications, 59(9),   pp. 3222-3228. 

 

Nomenclature 

A          Cross section of beam (m
2
)                                    Greek symbols   

E          Young’s modulus (N/m
2
)                            

L
   Linear fundamental 

frequency (rad/s) 

I             Second moment of area (m
4
)                           NL

   Non-linear 

frequency (rad/s) 

L
k             Linear foundation stiffness (N/m)            )( x   Trial function   
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NL
k           Nonlinear foundation stiffness (N/m

3
)        

S
k             Shearing layer stiffness (Nm) 

x
k            The curvature of the beam                                            

x
            The nonlinear axial strain                            

 L                  Length of beam (m)                               

 m          Mass per unit length (kg/m)                    

p            Axial load (N) 

       r             Radius of gyration of the cross section (m) 

t          Time (s) 

u              Longitudinal displacement (m) 

 w            Transverse displacement (m) 

)( tW       Time-dependent deflection parameter   

max
W       Dimensionless maximum amplitude of oscillation (m)          
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