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Abstract

In this paper, the large amplitude of free vibration and buckling of Euler—
Bernoulli beam rests on a non-linear elastic foundation subjected to an axial force are
studied. Hamilton’s principle is followed to derive governing equation of the beam
response. Using an analytical method based on the Galerkin technique, the nonlinear
governing equations of motion was simplified to a time-dependent Duffing equation
with cubic nonlinearities and then solved using Laplace Iteration Method.
Comparison between results of the present work and those available in literature
review shows reasonable agreement of this method. Effects of vibration amplitude,
elastic coefficients of foundation and axial force on the non-linear natural frequencies
and buckling load of beams are presented. Results reveal that decreasing linear and
shear parameters and increasing nonlinear parameters of foundation lead to increasing
frequency ratio and buckling load ratio. Furthermore, increasing axial force decreases
absolute values of both linear and nonlinear frequencies as well as natural frequency

ratio.
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1-Introduction

Beam is one of the important mechanical elements and has numerous applications
in different fields of engineering and industries such as civil, marine and aerospace
structures or vehicles.

In most applications, they are subjected to non-linear vibrations which lead to
material fatigue and structural damage due to increment of the oscillation amplitude
[1]. Therefore, it is necessary and very important to study dynamic nonlinear behavior
and natural responses of these structures at large amplitudes. Many investigations
have been reported on the linear, non-linear vibration and buckling of Euler-Bernoulli
beams with and without an elastic foundation. Lai et al. [2] utilized Adomian
Decomposition Method to obtain the natural frequencies and mode shapes for the
Euler- Bernoulli beam under various supporting conditions. Non-linear vibration
behavior Euler-Bernoulli beams subjected to axial load using homotopy analysis
method (HAM) is investigated by Pirbodaghi et al. [3]. Barari et al. [4] studied non-
linear vibration behavior of geometrically non-linear Euler-Bernoulli beams using
variational iteration method and parameter perturbation method. Non-linear vibration
Euler-Bernoulli beams subjected to axial load using He’s variational approach (VA)
and Laplace iteration methods (LIM) is studied by Bagheri et al. [5]. Analysis of the
nonlinear free vibration of simply-supported and clamped-clamped Euler-Bernoulli
beams fixed at one end subjected to the axial force using Hamiltonian approach is
presented by Bayat et al. [6]. Nonlinear vibration analysis of isotropic beams with
simple end conditions has been investigated by Kargarnovin and Jafari [7]. They have
used the HAM to obtain closed-form solutions for natural frequencies and beam

deflection. Liu and Gurram [8] investigated the free vibration of Euler-Bernoulli beam
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under various supporting conditions using a variational iteration method. Nonlinear
analysis for simply supported beam resting on a two-parameter elastic foundation is
presented by Hui-Shen [9]. The large amplitude free vibration of uniform beams on
Pasternak foundation using the conservation of total energy principle is presented by
Venkateswara [10]. The LIM method which was introduced by Rafieipour et al. [11]
is a very powerful method in solving non-linear differential equations and its
effectiveness is proved in studying non-linear vibration of composite plate. It was
shown that this is one of the best analytical methods due to the rate of convergence
and its accuracy.

The objectives of the present paper are to use the Laplace Iteration Method to obtain
approximate analytical solutions for large amplitude dynamic of Euler—Bernoulli
beam subjected to a compressive axial force resting on non -linear elastic foundation
and to study the influence of different parameters on the frequency and post-buckling

loads of the beam.

2. Theoretical formulation

A simply supported beam with uniform cross section made of a homogenous
isotropic material with negligible damping is considered. The beam is supported on an
elastic foundation with cubic nonlinearity and shearing layer as shown in Fig.1. The
beam is modeled according to Euler Bernoulli beam theory. Planes of the cross
sections remain planes after deformation, straight lines normal to the midplane of the
beam remain normal, and straight lines in the transverse direction of the cross section

do not change lenggh, [4]
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Fig. 1: A schematic of an Euler-Bernoulli beam subjected to an axial load resting on
non -linear elastic foundation
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Based on the Euler—Bernoulli beam theory, the nonlinear strain—displacement
relations of the beam with the axially immovable ends are given by, [14]
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where u is the longitudinal displacement, w is the lateral displacement andk is the

curvature of the beam, respectively. In this study, the equations of motion are derived

by using Hamilton’s principle. This principle can be expressed as, [12]

5J;[Ke—(US—W)]dt:0 _____ (3)
In equation (5), K is the Kkinetic energy, u . is the elastic strain energy and w _, is the
work done by the external applied forces and these are given by, [10,12 ]
T, = iJ‘Lm{aw} dx
270 ot
us=ijL(EA{—u+i(a—W)} +E|4[a VZV]} yd« o T o= (4)
270 ox 2 0x [ ox" ]
1 v ) 1 v 4 1.t ow , 1.+ ow,,
W, =—[ k wdx +—J' kW dx ——J' ko (—) dx +—J' p(—) " dx
270 270 270 ox 20 ox

Applying the Extended Hamilton’s principle [12], the governing equation of
transverse vibration of beam including axial stretching on a nonlinear elastic
foundation can be obtained as:

2 2 2

o JEI aZW]% o'w  [EA L(aw , lo'w dtw Cwe ko w ok (a LN 5)
— + “d—[ (=) —tm—=tkwt+tk, w - =0 ————- -
x| o't oL I ox o ettt T

For convenience, the following non-dimensional variables are used:

X =x/L,W =w/r,t=t(El /mLY"?, r=Ja/a)y, -—----- (6)

As a result equation (5) can be written as follows:

2

o'w o a'w Pazw 10°W '8W)zd WK W K(aw) . -
+ + -— X + + - =0 @ ————--
ot axt o ax’ 2axZL X : " Tox?
In which:
P=pL°/El , K, =kL*/El , K, =k, L /El K, = kL /El
————— (8)

Assuming w (X ,t) = q(t)¢(x) Where ¢(x) is the first normal mode of the beam [16]

and using the Galerkin method, the governing equation of motion is obtained as

follows:
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where coefficients «, are presented in Appendix A. The beam centroid is subjected to

the following initial conditions, [3]

da (x,0) _
dt

q(x,0) =w__ o (11)

From equation (10), the Post-buckling load—deflection relation of the beam can be

obtained as:

—(a,+a, +a, )-(a, +a)qt)’
P = L s — e e - (12)

NL
aZ

It should be noted that neglecting the contribution of g in equation (16), the linear
buckling load can be determined as, [17]

—(0:1+05KL +aKS)

%,

Equation (10) is strongly nonlinear and nobody can find an exact analytical closed

form solution for q(t) and, . Although numerical methods can be implemented to

get over this problem but, they cannot offer any suitable way for parametric study.
Therefore, it will be valuable if a powerful analytical approximate method exists that

presents an accurate approximation of q(t) and », while providing the ability to

parametric study of the problem.

3- Description of the proposed method

Using the Laplace Transformation method, an analytical approximated technique is
proposed to present an accurate solution for nonlinear differential equations. To
clarify the basic ideas of proposed method consider the following second order
differential equation [11],

Gt)+ N{ut)r=0  _____ (14)
With artificial zero initial conditions and N is a nonlinear operator. Adding and

subtracting the term “u (t) , equation (14) can be written in the form

Ut)+o'u(t) = LIt} =o’ut)-Nu)y (15)
where L is a linear operator. After taking Laplace transform of both sides of the
equation (15) in the usual way and then implementing the Laplace inverse transform

by using the Convolution theorem yields:
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u(t) = J-O[(a)zu(r) - N{u(z)}) isin( o(t-r)dz - ———= (16)

w
Now, the actual initial conditions must be imposed. Finally the following iteration
formulation
can be used, [13]

1 .t
U, =u,+ —f(wzun(r) -N{u ()P sin(w(t-7)dr - ———— 17)
) 0
Knowing the initial approximation u, , the next approximations, u_, n > 0 can be

determined

from previous iterations. Consequently, the exact solution may be obtained by using

u=1]im Y.

n— oo

The method proposed here can be applied in various non-linear problems. However,
there is no
need for any linearization and any small parameter, also, the obtained approximate

solutions converge quickly to the exact one.

4-Implementation of the proposed method

Rewriting equation (10) in the standard form of equation (15) results in the

following equation:

d’ , ,
dftlz(t)"'wﬂ(t):wﬂ(t)—N{ﬂ(t)} -——--(19)

where

N{n ()} = an (t)+ B (1) and a=a+Pa,va, va,, P=(z, +a,) .~ (20)

Applying the proposed method, the following iterative formula is formed as:

1 ! 2 .
Mo =1, +*L(w (7, () = N{n, ()sin( o (t-7))dr ----(21)
o

Equation(19) will be homogeneous, if left side of this equation is considered to be
zero. So, it’s homogeneous Solution

n,(t) =W . cos( ot) ----(22)
is considered as the zero approximation for using in iterative equation (21)

Expanding f (7,(z)) we have:
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2

t(n,(z) = (—anaX foW, —SﬂWmaxs}cos( a)t)—lﬂwmscos( 30t) - ———(23)
4 4

Considering the relation:
(cos(wt) —cos(m wt)

1! J w’(m?-1) (24)

—J'(cos(m wt))sin(ot -7))dzr =
w |tsin(a)t)

0
L 2w

m =1

The coefficient of the term cos(wt) In f (5,(z)) should be vanished in order to avoid

secular terms in subsequent iterations.

As a result, the nonlinear natural frequency of the motion can be expressed as:

3
@D |\ —\/0:+—,6Wrnax2 - —-—-—(25)
4

Then, the nonlinear to linear frequency ration can be determined as:

3 2
a + — W
D _ 4 (26)

C()L Ao

and, the zero-order approximate solution can be easily determined as:

U(t)=Wmax COS[ a+iﬂwmax2tJ ____(27)
\} 4

5-Results and discussion

In order to demonstrate the accuracy and effectiveness of the LIM, The
procedure explained in previous section is applied to simply supported and clamped

beams. Table 1 shows the comparison of non-linear to linear frequency ratio (v, /®

) with those reported in the literature. It can be observed that there is a reasonable
agreement between the results obtained from the LIM and those reported by Ref’s [14
and 15]. By increasing the amplitude of vibration the difference between the non-
linear frequency and linear frequency increases. In general, large vibration amplitude

will yield a higher frequency
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Table 1 Comparison of nonlinear to linear frequency ratio (o, /o, )

Boundary condition w__ | Ref.[14] | Ref. [15] Present
Study

Simply supported 1 1.0897 1.0891 1.0897

2 1.3229 1.3228 1.3228

3 1.6394 1.6256 1.6293

Clamped-clamped 1 1.0552 1.0572 1.0551

2 1.2056 1.2125 1.2056

3 1.3904 1.4344 1.4214

The exact nonlinear frequency (e, ) of Duffing equation (10) can be determined as

[18]:

dr ),1 ————(28)

+a )W, @+ sin *(r))

xl2
o, = 27r(4J.0 \/

1
(a,+Pa, +a, +0‘KS)+;(0‘KNL

The another verification attempt, frequency ration obtained by equation (25) for
versus dimensionless amplitude is compared with the results obtained from exact
frequency ratio using equation (28), as shown in Table (2). A reasonably good

agreement with exact solution for nonlinear analysis of beam can be observed.

Table 2: Comparison of nonlinear to linear frequency ratio (o, /@, )

a Present Study Exact Relative Error
0 1.0000 1.0000 0.000
1 1.0233 1.0213 0.002
2 1.0882 1.0863 0.019
3 1.1891 1.1871 0.002
4 1.3175 1.3167 0.008
5 1.4662 1.4658 0.004

The effect of the elastic foundation coefficients and axial force on the nonlinear
natural frequency and post-buckling behavior of simply supported beams is studied.

The figures (2-5) demonstrate effects of foundation parameters, linear (K ), shear
(k,)yand nonlinear (k) for simply supported beam. In all figures, the
dimensionless frequency ratio (o, /® )and dimensionless nonlinear to linear
buckling load ratio(p, /P ) versus dimensionless amplitude are presented. It is

worth mentioning that (p,, ) is determined by maximizing equation (12) in one period
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of vibration. It can be concluded from figures (2, 3) together with Table (3) that an
increase in the value of linear elastic foundation stiffness and shearing
layer stiffness results in decreasing hardening characteristic of the beam
i.e. decrease in the rate of increase in the nonlinear frequency and post-
buckling strength with amplitude. Whereas it is shown in figure (4) that an
increase in the value of nonlinear elastic foundation stiffness has inverse
results on the nonlinear frequency and post-buckling strength i.e. the rate
of increase in these figures enhances with an increase in nonlinear
foundation stiffness. The results might be explained by writing frequency ratio

based on equation (26) as:

w 3
N 1+_£Wmax2 —————— (28)

N 4 o

Considering the fact that « is a function on both linear and shear stiffness of the

foundation while s remain constant. This yields to decreasing frequency ration by
increasing K, andk .. On the other hand, however the effect of nonlinear stiffness
coefficient of the foundation appears only in g which results in increasing the

frequenacy ratio.

oy /o,
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Fig.2: Effects of the shear foundation stiffness on the frequency and post-buckling load-

deflection.
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Fig.3: Effects of the linear foundation stiffness on the frequency and post-buckling load-

deflection.

Table 3: Comparison of nonlinear frequency («,, ) and nonlinear to linear

frequency ratio (e, /e ) with change of different factors for beam, a=2.

Nonlinear natural frequency Nonlinear to linear frequency
P | KL KL KnL
0 100 0 100
Ks Ks Ks Ks
0 25 0 25 0 25 0 25
0| 0 |10.227 | 18.749 | 17.564 | 23.564 | 1.0373 | 1.0106 | 1.779 | 1.2702
50 | 12.447 | 20.038 | 18.935 | 24.602 | 1.0277 | 1.009 | 1.559 | 1.239
5| 0 | 5609 |17.383 | 16.099 | 22.493 | 1.0742 | 1.0124 | 2.322 | 1.31
50 | 10.269 | 18.767 | 17.583 | 23.577 | 1.0368 | 1.0106 | 1.776 | 1.269

The effect of initial and pre-buckled non-dimensional axial force on the nonlinear
natural frequency is shown in figure (5). It can be concluded that the values of
nonlinear frequency decrease with increase in the axial force, whereas nonlinear to

linear frequency ratio enhances with an increase in the axial force value.

32 14
2'8 == KNL=0 12 == KNL=0
54 | —m—KNL=10 L1095 meNL=10
8_1 : & 8
<, 2 KNL=100 Z 6 KNL=100
z [a W
8 4
2
0 : T T T T T T T T T 1
0 05 1 15 2 25 3 35 4 45 5 ) 0 051 152 253 35 4 45 5
max Fig.3: W, ..
Effects of the non- linear foundation stiffness on the frequency and post-buckling load-
deflection.
1.7
, 15
3
= 13
8Z
1.1
0.9

0 051 15 2 25 3 35 4 45 5
w

0 05 1 15 2 25 3 35 4 45 5

max
max

Fig.5: Effects of the axial load on the frequency ratio of the beam
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6- Conclusions

Laplace Iteration Method is used to obtain the analytical expressions for the
nonlinear free vibration of an Euler-Bernoulli beam on a nonlinear elastic foundation
subjected to axial compressive force. The influence of foundation stiffness parameters
and initial pre-buckled axial load on the nonlinear natural frequency and post-
buckling load-deflection has been investigated. Based on a detailed study, the
following observations are made:

1- The influence of linear and shear layer stiffness parameters is to decrease the
nonlinear behavior of the beam, whereas the nonlinear layer stiffness of the
foundation increases the strength of the nonlinearity.

2- The rate of increase in nonlinear to linear natural frequency and post-buckling to
critical load ratios is very low at small amplitudes. However, as the amplitude

increases, the effect of nonlinearity on these parameters becomes significant.

4-The nonlinear to linear frequency ratio enhances with an increase in the value of the
axial force, whereas the values of nonlinear frequency decrease.

5-Laplace Iteration Method provides the ability for parametric study of the considered
problem. Results revealed that the presented method offers accurate solution with
low computational effort.

6- Comparison between the results of the present study and other methods available in

the literature shows the accuracy of the method.

Appendix A:
I¢""¢dx "4 pd I¢”¢5d
B P S N R R
jo @ > dx J.# 2 dx K% ? dx
$° polx 4 pdx [ 4%d
aKNL:KNL J.0| ) a3=*0.5"‘0 |XJ‘0 - ! aKL_KL
J'O¢2dx _"0¢2dx

References

ARR



Thi-Qar University Journal for Engineering Sciences, Vol. 5, No.1 2014

[1] M.T. Ahmadian, M. Mojahedi, H. Moeenfard, (2009). < Free Vibration Analysis
of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare

Methods” J. of Solid Mechanics Vol. 1, pp.29-36.

[2] Lai, H.Y., Hsu, J.C., Chen, C.K. (2008). “An innovative eigenvalue
problem solver for free vibration of Euler- Bernoulli beam by using the
Adomian Decomposition Method”, Computers and Mathematics with

Applications, 56, 3204-3220.

[3] T. Pirbodaghi, M. T. Ahmadian, M. Fesanghary , (2009) “ On the homotopy
analysis method for non-linear vibration of beams” Mechanics Research
Communication, 36, 143-148.

[4] A. Barari, H.D.Kaliji, M.Ghadimi and G. Domairry , (2011) “ Non-linear vibration
of Euler-Bernoulli beams’’ Latin American Journal of Solid and Structure” 8,
139-148.

[5] S. Bagheri, A. Nikkar , H. Ghaffarzadeh , (2014) “Study of nonlinear vibration of
Euler-Bernoulli beams by using analytical approximate techniques” Latin
American Journal of Solids and Structures 11,157 — 168.

[6] M. Bayat, I. Pakar and M. Bayat, (2013) “ On the large amplitude free vibration
of axially loaded Euler-Bernoulli beams” Steel and Composite Structure, 14(1) ,
73-83.

[7] Kargarnovin, M.H., Jafari-Talookolaei, R.A. (2010) “Application of the
homotopy method for the analytic approach of the nonlinear free vibration
analysis of the simple end beams using four engineering theories” Acta
Mechanics. 212, 199-213.

[8] Liu, Y., Gurram, C. S., (2009)” The use of He’s variational iteration
method for obtaining the free vibration of an Euler-Beam beam” Math.
and Computer Modelling 50:1545-1552.

[9] Hui-Shen Shen, (2011)” A novel technique nonlinear analysis of beams on two-
parameter elastic foundation” Int. J. of Structural Stability and Dynamics, 11(6),
999-1014.

[10] G. Venkateswara Rao, (2003) ” The large amplitude free vibration of uniform

beams on Pasternak foundation” Journal of Sound and Vibration, 263, 954-960.

[11] Rafieipour, H. , Lotfavar, A. , Masroori, A., Mahmoodi, E.,( 2013) “Application

of Laplace iteration method to study of nonlinear vibration of laminated

VY



Thi-Qar University Journal for Engineering Sciences, Vol. 5, No.1 2014

composite plates Latin American Journal of Solids and Structures , 10(4), 781-
795.

[12] S. S. Rao., (2007) “ Vibration of Continuous Systems” John Wiley &Sons, Inc.,
Hoboken, New Jersey.

[13] E. Hesameddini and H. Latifizadeh, (2009) “Reconstruction of variational
iteration algorithms wusing the Laplace transform “Int. J. Nonlinear Sci.

Numerical. Simulation, 10(10), 1365-1370.

[14] R.K. Gupta, Gunda Jagadish Babu ,G. Ranga Janardhan ,G. Venkateswara
Rao0,(2009) “Relatively simple finite element formulation for the large amplitude

free vibrations of uniform beams” Finite Elements in Analysis and Design, Vol.

45, Issue 10, pp. 624-631.

[15] Emam SA., Nayfeh AH. (2009), “Postbuckling and free vibration of composite
beams” J. of Computer and Structure Vol. 88,pp. 634-642.

[16] Azimi M. and Kariman S. (2013), “Periodic Solution for Vibration of Euler-
Bernoulli Beams Subjected to Axial Load Using DTM and HA” J Appl Mech
Eng 2:2 http://dx.doi.org/10.4172/2168-9873.1000125

[17] L. Pakar and M. Bayat (2013), “An Analytic Study of Nonlinear Vibrations of
Buckled Euler-Bernoulli Beams” J. of Acta Physica Polonica A, Vol. 123 , pp.
48-52.

[18] Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M., (2010) “Frequency
analysis of strongly nonlinear generalized Duffing oscillators using He's
frequency-amplitude formulation and He's energy balance method” Computers
and Mathematics with Applications, 59(9), pp. 3222-3228.

Nomenclature

A Cross section of beam (m?) Greek symbols
E Young’s modulus (N/m?) », Linear fundamental
frequency (rad/s)

[ Second moment of area (m?) o, ~Non-linear
frequency (rad/s)

K, Linear foundation stiffness (N/m) #(x)  Trial function

L

VY
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Nonlinear foundation stiffness (N/m?®)

Shearing layer stiffness (Nm)

The curvature of the beam

The nonlinear axial strain

Length of beam (m)

Mass per unit length (kg/m)
Axial load (N)

Radius of gyration of the cross section (m)
Time (s)

Longitudinal displacement (m)
Transverse displacement (m)

Time-dependent deflection parameter

Dimensionless maximum amplitude of oscillation (m)
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