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ABSTRACT

A finite rectangular plate with double edge crack under uniaxial tension depends on the
assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain problem are studied
in the present paper. The effect of crack position, crack oblique and the kinked crack orientation
are investigated to predict if a crack starts to grow. These problems are solved by calculating
the Stress Intensity Factor SIF for mode | (K1) and 11 (KII) near the crack tip theoretically using
mathematical equations and numerically using finite element software ANSYS R15. A good
agreement is observed between the theoretical and numerical solutions. The results show that
the Kl increases with increasing the relative crack length and tensile stress and these values are
increased when the crack position draws near the plate edge while in case of parallel cracks the
mutual shielding effect reduces Kl in each crack. In mixed mode, it is shown that the maximum
values of KI and KlI occur at crack angle f=0° and 45°, respectively and the orientation of the
kinked crack have significant effects on the KI and KII.
KeyWords: Double edge crack, SIF, crack oblique, ANSYS R15, kinked.

L gy L e 7 93 5a Ak (3 il Badaa dagiial Aga¥l Bud Jalaa
(e gl ) lad o ol o
LSSl i) - 3y pealil) & ) gl - Ay giadl Al daslal) - (31 el
gaidlall
Ialaie | an) 5 olanly A algaY 4 jaa 7 53 30 8 ke (3 <1 JSAI Aldaiie adae Aadon Jusl 3 o3 Can ) 12 b
GEN Ayl 5 GEN Al 5y 3N wdsa il Al py a5 el Jladil 5 Apladll ¢ sall el 480K nn b e
Gall A 8 S 5 5V skl deal) 3ok Jalae il Lela o3 JSLEA 638 (3301 sai A8l ¢ suiill ¢ iiall
A 3l elllia ) B )l ANSY'S 15 sa0mall jualiall zeeli 5y alatindy Gaae 5 dacaly jl) ca¥alaall alasindy § ks
o3 5 2l dlgal s Bl ol Jshall 534 30 ol 3y slea ¥ 528l G5V skl o bl caiy ganad) 5 5 kil Jall o
G il Bl g pall il ol 4 ) siall (3 Ral Alls 3 ek daiial) dils (e 381 &8 ge o 5y Ladie 313 35 dagdl
585 Ladie a5 J 5V shall (5 semill Aol (o UilaaY clalinall ghall (8 (35 ISV Y shall dad e Iy
Jabaad Sl 5 S5V shall e e guual 5 il al g diall 330 Sl y il e 450 500 (s s BN Ayl
Meallsas
101


mailto:Lsh58@yahoo.com
mailto:Najahr2000@yahoo.com1

Thi_Qar University Journal for Engineering Sciences, VVol.7, No. 1 2016

1. INTRODUCTION

Recent development in engineering structures shows that small cracks in the body of
structures can cause a failure despite of the authenticity of elasticity theory and strength of
materials. As a result, fracture mechanics filed which is concerned with the propagation
of cracks in materials has developed to study more about this subject, Alietal. [1]. The crack
may grow to cause structure failure due to low stress, which acts on a structure. Stress Intensity
Factor (SIF) is a most important single parameter in fracture mechanics, which can be used to
examine if a crack, would propagate in a cracked structure under particular loading condition,
i.e. it controls the stability of the crack, Saleh [2] .

No structure is entirely free of defects and even on a microscopic scale these defects act as
stress raisers which initiate the growth of cracks. The theory of fracture mechanics therefore
assumes the pre-existence of cracks and develops criteria for the catastrophic growth of these
cracks. In a stressed body, a crack can propagate in a combination of the three opening modes
that shown in Figure 1. Mode | represents opening in a purely tensile field while modes 11 and
I11 are in-plane and anti-plane shear modes respectively. The most commonly found failures
are due to cracks propagating predominantly in mode I, and for this reason materials are
generally characterized by their resistance to fracture in that mode, Arencon and Velasco [3].

The double — edge cracked plate is a common specimen in research and practice for fracture
mechanics. It has been studied by Bowie [4], who gave solutions for a circular hole with a single
edge crack and a pair of symmetrical edge cracks in a plate under tension by using a conformal
mapping technique, while Newman [5], using the boundary collocation method, and Murakami
[6], used the body force method to analyze the tension problem for an elliptical hole with
symmetrical edge cracks. Isida and Nakamura [7], made an analysis for a slant crack emanating
from an elliptical hole under uniaxial tension and shear at infinitity by using the force body
method.

Yavuz et al. [8] analyzed multiple interacting cracks in an infinite plate to determine the
overall stress field as well as SIF for crack tips and singular wedges at crack kinks. A
perturbation approach for the elasticT-stress at the tip of a slightly curved or kinked crack based
on used by Li et al. [9], while Saleh [2] analyzed and determined the KII of several crack
configurations in plates under uniaxial compression using a two-dimensional Finite Element
Method (FEM). Various cases including diagonal crack and central kinked crack are
investigated with different crack's length, orientation and location. Antunes et al. [10] studied
numerically the effect of crack propagation on crack tip fields. Spagnoli et al. [11] described
the influence of the degree of crack deflection on the fatigue behavior and Ali et al. [1] utilized

the SIF to determine the stress intensity near the tip of a crack using FEM. Recentllty, Mohsin
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[12] studied the KI for center, single edge and double edge cracked finite plate subjected to
tension stress to investigate the differences between the theoretical and numerical solutions.
Fracture mechanics is used to evaluate the strength of a structure or component in the
presence of a crack or flaw, Fatemi [13]. In 1938 Westergaard solved the stress field for an
infinitely sharp crack in an infinite plate (Figure 3). The elastic stresses were given by the

equations, Rae [14]

Oyx = \/%cos (g) [1 — sin (g) sin (?)] ................. (1)
Oyy = \/% cos (g) [1 + sin (g) sin (?)] .................. 2)
Txy (g) sin ( ) cos ( ) ......................... 3)
ie oy = (ﬁ) () P &)

where Gijj is stress tensor, ris the distance from the crack tip, 0 is the angle with
respect to the plane of the crack, and fijare functions that are independent of the crack
geometry and loading conditions.

From Saouma [15]

Oxx = O \/ZEcose(1+singsin?)+--- ................. (5)
Oyy = O Zicose(l—singsin§)+--- ............... (6)
Tyy = G\ESID cos > cos— +o (7)
When 0 = 0, we have from (1) to (7)

KI
o = ( m) ............. (8)
Oyx = Oyy = zi .......... )
Ty =0, (10)
then

KI a

Gxxzoyy:(ﬁ)zo- Z ............. (11)
Then, the KI of a finite plate under tension load is

= 0\/%\/% = ovma, ... (12)

Stress intensity solutions are given in a variety of forms, K can always be related to the

through crack through the appropriate correction factor, Anderson [16]

K(LILID =Yovma, cooooeveeeeinenn... (13)
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where a: characteristic crack dimension and Y: dimensionless constant that depends on the
geometry and the mode of loading.

When a body subjected to tension loading, the stress intensity factors for mode | and mode
II to any planar crack oriented 90° — B (Figure 4) from the applied normal stress (KIg and Kllg)
can be obtained depend on Sih et al. [17] as follow

Klg = KL cos®B ...................... (14)

Kllg = Kl.cosB.sinf, .............. (15)

where Kl is the mode I stress intensity when 3 = 0.

Supposing that the crack in question forms an infinitesimal kink at an angle a from the plane
of the crack, as Figure 5 illustrates. The local SIF at the tip of this kink differs from the nominal
K values of the main crack. If we define a local x-y coordinate system at the tip of the kink ,
the local mode | and mode Il stress intensity factors at the tip are obtained by summing the

normal and shear stresses, respectively, at a, Anderson [16]:

= oyyV21mr = [ cos( ) +- cos( ) Klg + [— sm( )+ sm ]KIIB ....... (16)

Kll, = TyyV21r = [ [sm( ) + sm ] Klg + cos( ) + =cos ( 2“)] Kilg, ...... (17)

where Kl, and Kll, are the local SIF at the tip of the kink.
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)
Figure 1: Fracture modes [3]. Figure 2 Double edge
crack plate
specimen with
dimensions.
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Figure 3: Crack with sharp edge [14] Figure 4: Through crack in an infinite plate for the

general case where the principal stress is not perpendicular to the crack plane[16].

3 +
a

Figure 5: Infinitesimal kink at the tip of a macroscopic crack [16]

2. MATERIALS AND METHODS

Based on the assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain
problem, Double Edge Notch Tension (DENT) finite plate specimen as shown in Figure 2 is
studied using theoretical and numerical solutions.
2.1. SPECIMENS MATERIAL

The material of plate specimens is a Carbon Steel with modulus of elasticity =202 E-3
MN/m?, poison’s ratio = 0.292 and density = 7820 Kg/m?, Kulkarni [18].
2.2. SPECIMENS MODEL

To calculate the SIF in numerical and theoretical solutions, five models have been
selected as follows
I.  Double Edge Notch (DEN) is in the middle of the plate’s length (Figure 6a and b).
II.  DEN isin the various positions along Y-axis (Figure 6d).
1. Two parallel DEN are in the various positions along Y-axis (Figure 6e).
IV.  DEN with crack orientation is in the middle of the plate’s length (Figure 6f).
V.  DEN with crack orientation and kinked is in the middle of the plate’s length (Figure

69).
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Figure 6: ANSYS models with mesh and dimensions.

2.3. THEORETICAL SOLUTION

For theoretical calculation, many researchers reported different equations for many cases
to evaluate the SIF for double edge cracks. In this paper, the SIFs are theoretically calculated
as follow : -

- Kl values for model I, Il and 111 (i.e. DENT without orientation (3 = 0)) are calculated based
on (13), where
a) From Nassar [19]
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v (1.122—0.561(%)—0.205(%)2+O.471(%)3—0.190(%)4) .......... (18)

b) From Tada et al. [20]

Y= (1 + 0.122cos* ( b)) 12;1 tan (g) .................... (19)

- Values of Klg and Kllg for model IV (i.e. DENT with crack orientation) are calculated using
equations (14)

and (15), respectively.
- Values of Kl, and Kll, for model V (i.e. DENT with crack kinked) are calculated using
equations (16) and

(17), respectively.

2.4. NUMERICAL SOLUTION

Numerically, all the five models ( as mensioned above ) are solved to calculate the SIFs
using finite element software ANSYS R15 with PLANE183 element as a discretization
element.

2.5. PLANE183 ELEMENT DESCRPTION

PLANE183 is an ANSYS element with quadrilateral and triangle shape, plane strain
behavior and pure displacement formulation. It is defined by 8 nodes (I, J, K, L, M, N, O, P
) for quadrilateral element or 6 nodes ( I, J, K, L, M, N) for triangle element, two degrees of
freedom (Ux , Uy) at each node (translations in the X and Y directions) [21]. The geometry,

coordinate system and node locations for this element are shown in Figure 7.

K
. |
ﬁ@{;ﬁﬂ& rated
flangle J
for amai} KEYORT(11=0 KEYOPT{1} =1

X or radiah

Figure 7: PLANE183 element geometry, coordinate system and node locations [21].
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2.6. Applications

2016

To explain the effect of the five cases that mention above on the SIFs, many cases are

studied theoretically and numerically as reported in Table 1.

Table 1: The cases studied with the parameters, solution types and number of figures.

No. of Changed Parameter in this .
Studied case study Other Type of Figure
Cases Parameters Solutions No.
Name Values
0.110 0.6 O =200 Mpa Theoretical
a/b with step 0.05 b= 350mm and Numerical 8
I i h =62.5mm
s 50 to 250Mpa E _ ggr;un Theoretical o
with step 50Mpa | o mm and Numerical
a=15mm
S, =200 Mpa
=50 to 50mm b = 50mm .
I z with step Smm h=62_5mm Numerical 10
a=15mm
20mm to 6‘_=200 Mpa
111 S 100mm with step Egﬁgujn;?n Numerical 11
10mm .
a=15mm
O, =200 Mpa
IT and -50 to 50mm b = 50mm .
111 z with step Smm h=62.5mm Numerical 12
a=15mm
S, =200 Mpa
v B -75%to 75° b = 50mm Theoretical 13 and
with step 5° h=62.5mm and Numerical 14
a=15mm
S, =200 Mpa
0°, 15°, 30° b = 50mm
v (o+ B) 45°, 60°65°, h=62.5mm Theoretical 15 and
F0e 759, BO° 852, | a=~=10mm and Numerical 16
20° d=5mm
B=15°
S, =200 Mpa
0°% 15°, 30° Egsgﬂsrﬁ?n
A% (ot B) 45°, 60°65°, a=1 Or-n:n MNumerical 17 and
700 750, 80° 850, _ - 18
90° d=5mm
B=(15°.45° 75%

3. RESULTS AND DISCUSSIONS

3.1. Effect of relative crack length and tensile stress on the Kl

Figures 8 and 9 explain the theoretical and numerical variation of KI for model | with

different values of relative crack length (a/b) and tensile stresses (ot), respectively. It can be

seen that increasing the ratio of a/b and ot leads to increasing the value of K in a high level.

From these figures, it is clear that there is no significant difference between the Theoretical

(Eq.18 and Eq.19) and numerical (Quarter and half model) results with a maximum discrepancy

of 0.79%.
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numerical Variation
of Kl with (a/b) ratio. of KI with 6t.

3.2. Effect of DENT position on the KI

The variation of KI for model 11 with different edge crack positions along Y-axis (z) are
shown in Figure 10. It can be seen that the KI values increases slightly fromz =0to z =
+30mm, after that, KI values rises in a high level. Generally, maximum KI values appear at
when the crack near the plate edge while the minimum values occur when its position at the

middle of plate (i.e. z = 0).

4000

3500
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1500
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Stresy Intensity Factor KT (Mp 'Jm)
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- -4 =20 ] 20 40 o
Crack Distance ( z) (mum)

Figure 10: Variation of KI with crack distance (z).

3.3. Effect of two parallel DENT position on the KI

Figure 11 illustrates the variation of KI for model 111 with various two parallel edge crack
positions along Y-axis (s). From this figure, it can be seen that the K1 values are increased with
increasing the distance between the two parallel cracks (s).

In the other hand, Figure 12 explains a comparison between the effect of one and two edge
crack positions along Y-axis on the Kl from z = -50mm to z = +50mm. It is clear that the Kl
values for model Il are greater than of model Il at z = 0, after that, the difference decreases

slightly from z=0 to z= £40mm and vanished when z>£40mm. Generally, In case of parallel
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cracks, the crack tends to shield one another and this mutual shielding effect reduces Kl in each

crack. The mutual shielding effect increase with decrease the distance between the two parallel

cracks.
4000 N - .
—p— | crack e cvacks

_‘E‘* 3500 000
-

=, § S0
= 3000 =,

= :{ 3000
w2500 [
g =
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g 1500 B
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= =
= o0 ]

?; £ 1000

= S0 E =00
-

0 o

‘ oo e s e A % 40 0 0 X0 40 0
Distance Between twe cracks ( 5) (mm) Crack Distance () (mm)

Figure 11: Variation of KI with the distance  Figure 12: Variation of KI with crack
between two parallel cracks (). distance for 1 and 2 cracks (z).
3.4. Effect the DENT inclination angle on the KI and Kl
The variation of KI and KII values with the double edge crack angle () for model IV are
shown in figures 13 and 14, respectively. From these figures, it is too easy to see that the
maximum KI and KII occur at B = 0°and p = 45°, respectively. Furthermore, KI gradually
decreases when 0°> 3 > 0° while KII gradually decreases when 45° > 3>45°. In addition, it
is shown that a small difference between KI values in numerical and theoretical solution but
this difference will increase when calculate the Kl especially when 60°> $>30° and -60° <
B <-30° It is clear that the crack angle has a considerable effect on the KI and Kl values as

a result of the shear stresses and normal stresses depend on the angle values.

15800

g Nimirical e Thscwstical e Nrpasyical i Thesarstical

5
=
2 2
s &

B E
= s
X8 888 8
=T =B

Stress Intensity Factor KI (Mp \Jm)
=
=
Stress Intensity Factor KI (Mpim)
= &
=] =1

=
=

e W75 -5 -2 60 25 S0 75 o0 -log -7 WA w2300 2 s A oo
Crack Orientation | [7%) Crack Orientation { [7°)

Figure 13: Variation of KI with the crack Figure 14: Variation of KII with the crack
Orientation °. Orientation °.
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3.5. Effect of the DENT inclination angle with kinked on the Kla and Klla

2016

Figures 15 and 16 illustrate a compression between theoretical and numerical of Kla and

Klla values (Kla and Klla= KI and KII at crack tip A, respectively as shown in Figure 6Q)
with variation of crack orientation plus kink angles ((a+) = 0°, 15°, 30°, 45°, 60°, 75°, 80°, 85°

and 90°)) at crack angle ( = 15°). From Figure 15 , it can be seen that there is a considerable

effect between two curves when o < 0° after that, the difference decreases slightly and vanished

at a > 60°. In the other hand, From Figure 16, it is clear that there in no significant difference

between theoretical and numerical values at a<45°but the difference slightly increase after this

angle.

1800
1600
1400
1200
1000
800
600
400
200

Stress Intensity Factor KI (Mp )

o

Figure 15:

variation

=—#—MNumerical =l=Theoretical

Stress futensity Factor KI (Mplm)

0 15 30 45 80 75 90
Crack orientation + Kink angle (§%+a®)

&00

500

400

300

200

100

-100

=—#—MNumerical =—@—Theoretical

o 15 30 45 60 75 90
Crack erientation + Kink angle (i +a®)

Theoretical and numerical variation Figure 16: Theoretical and numerical

of KI with the (B°+0°) for (B°=15°).

of KII with the(p°+a?°) for (f°=15°).

Furthermore, the variation of Kla and Klla with the ((o+f) = 0°, 15°, 30°, 45°, 60°, 75°,
80°, 85° and 90°) at crack angles (p = 15°, 45° and 75°) are explained in the Figures 17 and

18, respectively. Figure 17 illustrates that the increasing in the angles  and (B+a) lead to

slightly decrease in the Kla values while, from figure 18, it can be seen that the increasing

in the B lead to decrease in KIIa values. In addition, Klla increases with the increase of (B+a)

angles until 60°and then it starts decreasing. Hence, maximum value of Kla and Kllaoccur

at when (B+a) = 0°and 60°, respectively. In fact, the mixed mode crack (crack with mode |

and 1) become a mode I crack only due to the crack tend to propagate perpendicular to the

applied normal stress.
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Furthermore, Figures 19 and 20 are graphically illustrated VVon-Mises stresses countor
plots with the variation of the locations and angle of the crack. Figures 19a, b, c, d, and e
explain the variation of Von-Mises stresses for DENT in the middle of the plate length, near
the plate edge, parallel cracks, with angle and with kinked, respectively while the variation
of Von-Mises stresses with different values of crack and kinked angles are illustrate in the
Figures 20a, b, c, d and e. From these figures, it is clear that all cases mentioned above have
a considerable effect on the plate stresses.

(a) (b) (c)

(d)

Increase

Figure 19: Countor plots of Von-Mises stress with the variation for double edge crack for

different cases.
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Figure 20: Countor plots of Von-Mises stress for different double edge crack orientations
and kink angles.
4. CONCLUSIONS

The following conclusion can be drawn from the present study:

1- Inall studied cases, a good agreement is observed between the theoretical and numerical
results with a maximum discrepancy of 0.79%.

2- Kl increases with increasing the relative crack length and tensile stress and when the
crack position draw near the plate edge but this value decreased in the case of two
parallel cracks as a result of the mutual shielding effect K1 reduces in each crack.

3- The maximum values of KI and KII occur at crack angle =0° and 45°, respectively. In
addition, KII vanished at § = 0° and 90° while KI vanished at § = 90°.

4- In kinked crack case, the maximum value of KIA and KIIA occur at (B+a) = 00 and
600, respectively. It was seen that the orientation of the kinked crack have a significant
effects on the Kl and KII.
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