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ABSTRACT 

A finite rectangular plate with double edge crack under uniaxial tension depends on the 

assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain problem are studied 

in the present paper. The effect of crack position, crack oblique and the kinked crack orientation 

are investigated to predict if a crack starts to grow.  These problems are solved by calculating 

the Stress Intensity Factor SIF for mode I (KI) and II (KII) near the crack tip theoretically using 

mathematical equations and numerically using finite element software ANSYS R15. A good 

agreement is observed between the theoretical and numerical solutions. The results show that 

the KI increases with increasing the relative crack length and tensile stress and these values are 

increased when the crack position draws near the plate edge while in case of parallel cracks the 

mutual shielding effect reduces KI in each crack. In mixed mode, it is shown that the maximum 

values of KI and KII occur at crack angle β=0o and 45o, respectively and the orientation of the 

kinked crack have significant effects on the KI and KII. 
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 معامل شدة الأجهاد لصفيحة محددة ذات شق طرفي مزدوج معرضة لأجهاد شد

 نجاح رستم محسن                              د. لطيف شخير جبر       

 قسم التقنيات الميكانيكية -المعهد التقني في الناصرية   -الجامعة التقنية الجنوبية  -العراق 

 الملخص

في هذا البحث تم دراسة صفيحة محددة مستطيلة الشكل ذات شق طرفي مزدوج معرضة لأجهاد شد بأتجاه واحد أعتماداً 

زاوية  الشق وزاوية الشق وميكانيكية الكسر المرن الخطية  وأنفعال المستوي. تمت دراسة تأثير موقع الشق على فرضيتي 

المتقرع للتنبوء بأمكانية نمو الشق. هذه المشاكل تم حلها بحساب معامل شدة الأجهاد للطور الأول و الثاني قرب قمة الشق 

. لوحظ ان هنالك تطابق جيد ANSYS 15بأستخدام برنامج العناصر المحددة نظرياً بأستخدام المعادلات الرياضية وعددياً 

بين الحل النظري والعددي. بينت النتائج ان الطور الأول لشدة الأجهاد يزداد بزيادة الطول النسبي للشق وأجهاد الشد وهذه 

وازية فأن تأثير الدرع الواقي المشترك القيمة تزداد عندما يقترب موقع الشق من حافة الصفيحة بينما في حالة الشقوق المت

يقلل من قيمة الطور الأول لكل شق. في الطور المختلط، لاحظنا ان القيمة القصوى للطور الأول والثاني تحدث عندما تكون 

مل على التوالي والميلان للشق المتفرع له تأثير واضح على قيمة الطور الأول والثاني لمعا o45و  o0 زاوية الشق تساوي 

 شدة الأجهاد.
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1. INTRODUCTION 

Recent development in engineering structures shows that small cracks in the body of 

structures can cause a failure despite of the authenticity of elasticity theory and strength of 

materials. As a  result,  fracture  mechanics  filed  which  is  concerned  with  the propagation 

of cracks in materials has developed to study more about  this  subject, Ali et al. [1].   The crack 

may grow to cause structure failure due to low stress, which acts on a structure. Stress Intensity 

Factor (SIF) is a most important single parameter in fracture mechanics, which can be used to 

examine if a crack, would propagate in a cracked structure under particular loading condition, 

i.e. it controls the stability of the crack, Saleh [2] .     

No structure is entirely free of defects and even on a microscopic scale these defects act as 

stress raisers which initiate the growth of cracks. The theory of fracture mechanics therefore 

assumes the pre-existence of cracks and develops criteria for the catastrophic growth of these 

cracks. In a stressed body, a crack can propagate in a combination of the three opening modes 

that shown in Figure 1. Mode I represents opening in a purely tensile field while modes II and 

III are in-plane and anti-plane shear modes respectively. The most commonly found failures 

are due to cracks propagating predominantly in mode I, and for this reason materials are 

generally characterized by their resistance to fracture in that mode, Arencón and Velasco [3].      

The double – edge cracked plate is a common specimen in research and practice for fracture 

mechanics. It has been studied by Bowie [4], who gave solutions for a circular hole with a single 

edge crack and a pair of symmetrical edge cracks in a plate under tension by using a conformal 

mapping technique, while Newman [5], using the boundary collocation method, and Murakami 

[6], used the body force method to analyze the tension problem for an elliptical hole with 

symmetrical edge cracks. Isida and Nakamura [7], made an analysis for a slant crack emanating 

from an elliptical hole under uniaxial tension and shear at infinitity by using the force body 

method. 

Yavuz et al. [8] analyzed multiple interacting cracks in an infinite plate to determine the 

overall stress field as well as SIF for crack tips and singular wedges at crack kinks. A 

perturbation approach for the elasticT-stress at the tip of a slightly curved or kinked crack based 

on used by Li et al. [9], while Saleh [2] analyzed and determined the KII of several crack 

configurations in plates under uniaxial compression using a two-dimensional Finite Element 

Method (FEM). Various cases including diagonal crack and central kinked crack are 

investigated with different crack's length, orientation and location. Antunes et al. [10] studied 

numerically the effect of crack propagation on crack tip fields. Spagnoli et al. [11] described 

the influence of the degree of crack deflection on the fatigue behavior and Ali et al. [1] utilized 

the SIF to determine the stress intensity near the tip of a crack using FEM.  Recentllty, Mohsin 



 

103 

 

Thi_Qar University Journal for Engineering Sciences, Vol.7, No. 1 2016 

[12] studied the KI for center, single edge and double edge cracked finite plate subjected to 

tension stress to investigate the differences between the theoretical and numerical solutions.     

Fracture mechanics is used to evaluate the strength of a structure or component in the 

presence of a crack or flaw, Fatemi [13].  In 1938 Westergaard solved the stress field for an 

infinitely sharp crack in an infinite plate (Figure 3). The elastic stresses were given by the 

equations, Rae [14]       
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i.e     σij  = (
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√2πr
) fij(θ),         …………….(4) 

where Ϭij  is  stress  tensor,  r is  the  distance  from  the  crack  tip,   θ  is  the  angle  with 

respect to the  plane  of  the  crack,   and fij are  functions  that  are  independent of  the crack 

geometry and  loading conditions. 

From Saouma [15]         
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When θ = 0, we have from (1) to (7) 
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KI

√2πr
)          ………….(8) 
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 τxy = 0,               …………(10) 

then 

σxx = σyy = (
KI

√2πr
) = σ√

a

2r
          ………….(11) 

Then, the KI of  a finite plate under tension load is  

KI =  σ√
a

2r
√2rπ   =    σ√πa ,      ……..…(12)   

Stress intensity solutions are given in a variety of forms, K can always be related to the 

through crack through the appropriate correction factor, Anderson [16] 

K(I, II, III) = Yσ√πa ,     ……….……….(13) 
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where a: characteristic crack dimension and Y: dimensionless constant that depends on the 

geometry and the mode of loading. 

When a body subjected to tension loading, the stress intensity factors for mode I and mode 

II to any planar crack oriented 90° − β  (Figure 4) from the applied normal stress (KIβ and KIIβ) 

can be obtained depend on Sih et al. [17] as follow  

KIβ = KI. cos2β ………………….(14) 

KIIβ =  KI. cosβ. sinβ , …………..(15) 

where KI is the mode I stress intensity when β = 0.  

Supposing that the crack in question forms an infinitesimal kink at an angle α from the plane 

of the crack, as Figure 5 illustrates. The local SIF at the tip of this kink differs from the nominal 

K values of the main crack. If we define a local x-y coordinate system at the tip of the kink , 

the local mode I and mode II stress intensity factors at the tip are obtained by summing the 

normal and shear stresses, respectively, at α, Anderson [16]: 
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where KIα and KIIα are the local SIF at the tip of the kink.  

 

                         Figure 1: Fracture modes [3].                                     Figure 2 Double edge 

crack plate  

                                                                                                                  specimen with 

dimensions. 
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Figure 3: Crack with sharp edge [14]              Figure 4: Through crack in an infinite plate for the 

 general case where the principal stress is           not perpendicular to the crack plane[16]. 

 

 

Figure 5: Infinitesimal kink at the tip of a macroscopic crack [16] 

 

2. MATERIALS AND METHODS  

Based on the assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain 

problem, Double Edge Notch Tension (DENT) finite plate specimen as shown in Figure 2 is 

studied using theoretical and numerical solutions. 

 2.1. SPECIMENS MATERIAL 

The material of plate specimens is a Carbon Steel with modulus of elasticity =202 E-3 

MN/m2, poison’s ratio = 0.292 and density = 7820 Kg/m3, Kulkarni [18]. 

2.2. SPECIMENS MODEL 

To calculate the SIF in numerical and theoretical solutions, five models have been 

selected as follows 

I. Double Edge Notch (DEN) is in the middle of the plate’s length (Figure 6a and b). 

II. DEN is in the various positions along Y-axis (Figure 6d).  

III. Two parallel DEN are in the various positions along Y-axis (Figure 6e).  

IV. DEN with crack orientation is in the middle of the plate’s length (Figure 6f).  

V. DEN with crack orientation and kinked is in the middle of the plate’s length (Figure 

6g). 
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Figure 6: ANSYS models with mesh and dimensions. 

 

 

2.3. THEORETICAL SOLUTION  

      For theoretical calculation, many researchers reported different equations for many cases 

to evaluate the SIF for double edge cracks. In this paper, the SIFs are theoretically calculated 

as follow : - 

- KI values for model I, II and III (i.e. DENT without orientation (β = 0)) are calculated based 

on (13), where 

a ) From Nassar [19] 
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 b ) From Tada et al. [20]  
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- Values of KIβ and KIIβ for model IV (i.e. DENT with crack orientation) are calculated using 

equations (14) 

   and (15), respectively. 

- Values of KIα and KIIα for model V (i.e. DENT with crack kinked) are calculated using 

equations (16) and 

  (17), respectively. 

 

 2.4. NUMERICAL SOLUTION 

Numerically, all the five models ( as mensioned above ) are solved to calculate the SIFs 

using finite element software ANSYS R15 with PLANE183 element as a discretization 

element.  

2.5. PLANE183 ELEMENT DESCRPTION  

PLANE183 is an ANSYS element with quadrilateral and triangle shape, plane strain 

behavior and pure displacement formulation. It is defined by 8 nodes ( I, J, K, L, M, N, O, P  

) for quadrilateral element or 6 nodes ( I, J, K, L, M, N) for triangle element, two degrees of 

freedom (Ux , Uy) at each node (translations in the X and Y directions) [21]. The geometry, 

coordinate system and node locations for this element are shown in Figure 7.  

 

Figure 7: PLANE183 element geometry, coordinate system and node locations [21]. 
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2.6. Applications 

To explain the effect of the five cases that mention above on the SIFs, many cases are 

studied theoretically and numerically as reported in Table 1. 

Table 1: The cases studied with the parameters, solution types and number of figures. 

 

3. RESULTS AND DISCUSSIONS 

3.1. Effect of relative crack length and tensile stress on the KI 

Figures 8 and 9 explain the theoretical and numerical variation of KI for model I with 

different values of relative crack length (a/b) and tensile stresses (σt), respectively. It can be 

seen that increasing the ratio of a/b and σt leads to increasing the value of KI in a high level. 

From these figures, it is clear that there is no significant difference between the Theoretical 

(Eq.18 and Eq.19) and numerical (Quarter and half model) results with a maximum discrepancy 

of 0.79%. 
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       Figure 8: Theoretical and numerical Variation            Figure 9: Theoretical and 

numerical Variation  

of KI with (a/b) ratio.                                                       of KI with Ϭt. 

3.2. Effect of DENT position on the KI 

The variation of KI for model II with different edge crack positions along Y-axis (z) are 

shown in Figure 10.  It can be seen that the KI values increases slightly from z = 0 to z = 

±30mm, after that, KI values rises in a high level. Generally, maximum KI values appear at 

when the crack near the plate edge while the minimum values occur when its position at the 

middle of plate (i.e. z = 0).  

 

    Figure 10: Variation of KI with crack distance (z). 

 

 3.3. Effect of two parallel DENT position on the KI  

Figure 11 illustrates the variation of KI for model III with various two parallel edge crack 

positions along Y-axis (s).  From this figure, it can be seen that the KI values are increased with 

increasing the distance between the two parallel cracks (s).  

In the other hand, Figure 12 explains a comparison between the effect of one and two edge 

crack positions along Y-axis on the KI from z = -50mm to z = +50mm. It is clear that the KI 

values for model II are greater than of model III at z = 0, after that, the difference decreases 

slightly from z=0 to z= ±40mm and vanished when z>±40mm. Generally, In case of parallel 
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cracks, the crack tends to shield one another and this mutual shielding effect reduces KI in each 

crack. The mutual shielding effect increase with decrease the distance between the two parallel 

cracks.  

 

 Figure 11: Variation of KI with the distance       Figure 12: Variation of KI with crack  

  between two parallel cracks (s).                            distance for 1 and 2 cracks (z). 

 

3.4. Effect the DENT inclination angle on the KI and KII  

The variation of KI and KII values with the double edge crack angle (β) for model IV are 

shown in figures 13 and 14, respectively.  From these figures, it is too easy to see that the 

maximum KI and KII occur at β = 0o and β = 45o, respectively. Furthermore, KI gradually 

decreases when 0o > β > 0o while KII gradually decreases when 45o > β>45o. In addition, it 

is shown that a small difference between KI values in numerical and theoretical solution but 

this difference will increase when calculate the KII especially when 60o> β>30o and -60o < 

β < -30o. It is clear that the crack angle has a considerable effect on the KI and KII values as 

a result of the shear stresses and normal stresses depend on the angle values.  

 

 Figure 13: Variation of KI with the crack          Figure 14: Variation of KII with the crack  

        Orientation βo.                                                                      Orientation βo. 

  



 

111 

 

Thi_Qar University Journal for Engineering Sciences, Vol.7, No. 1 2016 

3.5. Effect of the DENT inclination angle with kinked on the KIA and KIIA  

Figures 15 and 16 illustrate a compression between theoretical and numerical of KIA and 

KIIA values  (KIA and KIIA= KI and KII at crack tip A, respectively as shown in Figure 6g) 

with variation of crack orientation plus kink angles ((α+β) = 0o, 15o, 30o, 45o, 60o, 75o, 80o, 85o 

and 90o)) at crack angle (β = 15o). From Figure 15 , it can be seen that there is a considerable 

effect between two curves when α < 0o after that, the difference decreases slightly and vanished 

at α > 60o.  In the other hand, From Figure 16, it is clear that there in no significant difference 

between theoretical and numerical values at α≤45obut the difference slightly increase after this 

angle. 

 

Figure 15: Theoretical and numerical variation    Figure 16: Theoretical and numerical 

variation 

of KI with the (βo+αo)  for (βo=15o).          of KII with the(βo+αo) for (βo=15o).                                        

 

Furthermore, the variation of KIA and KIIA with the ((α+β) = 0o, 15o, 30o, 45o, 60o, 75o, 

80o, 85o and 90o) at crack angles (β = 15o, 45o and 75o) are explained in the Figures 17 and 

18, respectively. Figure 17 illustrates that the increasing in the angles β and (β+α) lead to 

slightly decrease in the KIA values while, from figure 18, it can be seen that the increasing 

in the β lead to decrease in KIIA values. In addition, KIIA increases with the increase of (β+α) 

angles until 60o and then it starts decreasing. Hence, maximum value of KIA and KIIA occur 

at when  (β+α) = 0o and 60o, respectively. In fact, the mixed mode crack (crack with mode I 

and II) become a mode I crack only due to the crack tend to propagate perpendicular to the 

applied normal stress. 
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Figure 17: Numerical variation of KI with             Figure 18: Numerical variation of KII with 

         the (βo+αo) for different βo.                                    the (βo+αo) for different βo. 

                           

   Furthermore, Figures 19 and 20 are graphically illustrated Von-Mises stresses countor 

plots with the variation of the locations and angle of the crack. Figures 19a, b, c, d, and e 

explain the variation of Von-Mises stresses for DENT in the middle of the plate length, near 

the plate edge, parallel cracks, with angle and with kinked, respectively while the variation 

of Von-Mises stresses with different values of crack and kinked angles are illustrate in the 

Figures 20a, b, c, d and e. From these figures, it is clear that all cases mentioned above have 

a considerable effect on the plate stresses.  

 

Figure 19: Countor plots of Von-Mises stress with the variation for double edge crack for 

different cases. 
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Figure 20: Countor plots of Von-Mises stress for different double edge crack orientations 

and kink angles. 

4. CONCLUSIONS 

The following conclusion can be drawn from the present study: 

1- In all studied cases, a good agreement is observed between the theoretical and numerical 

results with a maximum discrepancy of 0.79%. 

2- KI increases with increasing the relative crack length and tensile stress and when the 

crack position draw near the plate edge but this value decreased in the case of two 

parallel cracks as a result of the mutual shielding effect KI reduces in each crack. 

3- The maximum values of KI and KII occur at crack angle β=0o and 45o, respectively. In 

addition, KII vanished at β = 0o and 90o while KI vanished at β = 90o.  

4- In kinked crack case, the maximum value of KIA and KIIA occur at (β+α) = 0o and 

60o, respectively. It was seen that the orientation of the kinked crack have a significant 

effects on the KI and KII. 
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