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Abstract 

  
  The paper presents the transverse vibration of an open edge crack graded Rayleigh beam with axial motion. The 

vibration equation was obtained relying on Hamilton's precept and resolved by the approach of Galerkin's. The power-

law is adopted to represent the gradient of properties of the material composing the beam along the direction of the 

thickness. Cracks were modeled as rotational massless spring. The effects of axial velocity, material property change 

index, location, and depth of cracking on the vibration characteristics are observed. Also, the corresponding mode 

shapes are found for cracked moving graded Rayleigh beam with simply supported, and fixed-fixed end supports. The 

results clear up that the natural frequencies drop due to the rise in the axial velocity, the crack depth, and the material 

property index.  
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1. Introduction  

 
Because of the technical significance of the axial 

movement of engineering structures, as it is used in 

many mechanical, civil, and electronic engineering 

applications, such as power transmission belts, fluid 

transfer tubes, etc. [1], several studies have discussed 

the axial motion of the beam using different beam 

theories, as well as several solution methods as, J. R. 

Chang et al. [2] to solve the axially moving equations 

of a homogeneous beam derived based on of Rayleigh 

beam theory and Hamilton precept, the approach of a 

finite element has relied upon. Through the results, it 

was found that the decrease in the amplitude of the 

axial oscillation of the beam leads to a reduction of the 

unstable areas in the system.  

According to Timoshenko's theory and Hamilton's 

extended, Y. Yesilce [3] derived the kinematic 

equations for a moving homogeneous beam with 

pinned-pinned, fixed and cantilever end supports. The 

method of differential transformation has been adopted 

to solve the vibration equations. The results showed 

that the axial tensile load is significant because it 

directly affects the natural frequencies (the frequencies 

rise with the augmentation in the axial tensile load or 

decrease with its decrease).  

H. Y. Chen and H. B. Chen [4] demonstrate the 

influence of the axial compression load on a 

homogeneous beam moving axially. They relied on 

Timoshenko's theory to derive the vibration equations 

as they solved using Galerkin and differential 

quadrature methods. The effect of some factors on 

frequencies, including movement speed and 

compressive load factor was discussed. The results 

showed that the critical velocity decreases as a result of 

increased compression load and vice versa, and their 

combination (i.e. the axial velocity and the 

compression load together) leads to regression in beam 

stability. N. Liu et al. [5], using Bernoulli Euler 

theorem and the second law of Newton, the vibration 

equation for a beam moving axially under the action of 

the lumped mass derived and this equation solved 

using Galerkin's method. The results indicated that 

increasing the axial speed and weight of lumped mass 

reduces the natural frequencies. Z. Yang et al. [6] used 

differential quadrature and the Galerkin methods to 

find natural frequencies from the kinematic equations 

of the axially moving homogeneous Timoshenko beam 

for clamped end condition. R. F. Zinati et al. [7] found 

the foundations of the governing equation for a 

nonlinear, moving, flexible, viscous beam with 

intermediate support using Rayleigh's model and 

Hamilton's principle. Through results, rotational inertia 

was found to lead to a significant decrease in natural 

frequencies, while the rise in natural frequencies was 

dominated by the medium support of the beam.  

The vibration of moving beam with free, simply 

assisted, clamped end conditions were explained by H. 

Ding et al. [8], The approach of dynamic stiffness was 

used to solve the derived motion equations depending 

on the Euler and Timoshenko models.  

M. Avcar [9] established the motion equation of a 

homogeneous beam for clamped, simply supported, 

clamped-simply supported, and cantilever end 

supported based on the Euler model and solved by the 

Newton Raphson method. 

 

Due to the existence of advanced engineering 

applications that require a material with certain 

characteristics to withstand the working conditions, and 
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these properties may sometimes be contradictory, 

meaning that they cannot be contained in the single 

homogeneous material used. Therefore, sometimes we 

need to combine two materials to obtain a substance 

that has properties that differ from the basic properties 

of its constituent materials. A new type of composite 

material in which properties are continuously and 

smoothly graduated from one substance to another to 

avoid the problem of deformation in armored vehicles, 

and which was first used by a group of Japanese 

scientists during a spaceplane project in 1984, is known 

as a functionally graded material (FGM). These 

materials have become popular in many applications 

recently, such as airframes, vibrating engine casings, 

human implants [10], thermal barrier systems, bamboo, 

teeth [11], nuclear reactors, biomedical, and electronics 

[12]. FGM is usually a mixture of ceramics and metals. 

M. Avcar [13] the vibration equation of the 

inhomogeneous Rayleigh beam was addressed. The 

differences in the material property gradient have 

followed the power-law distribution to represent it.   

S.A. Sina et al. [14], used the shear deformation model 

to establish the functionally graded beam vibration 

equation for cantilever, simply support and clamped 

end conditions which were solved by an analytic 

method. Discussed the influence of shear deformation 

factor and material gradient indicator on vibration 

characteristics . 

 Zhao and Wang [15], Hamilton’s precept and Euler 

model were relied to establish the vibration equation of 

a functionally graded beam with cantilever end 

condition. By count on the power-law, the material 

properties differ by the thickness direction. To solve 

the vibration equation, the Galerkin method was used. 

The impacts on natural frequencies of the gradient 

index of the material properties and speed of 

deployment were studied. 

 Aydogdu and Taskin [16], Shear deformation and 

Euler-Bernoulli models were used to find the vibration 

equations of the pinned-pinned graded beam. The 

properties of functionally graded material varied 

according to exponential and power laws through the 

thickness direction. The vibration equations were 

resolved by the Navier type solution.  

H. T. Thai and T. P.Vo [17], the vibration of a graded 

beam was developed using shear deformation theorem. 

The properties of material varied along the beam 

thickness direction relying on power-law. The results 

showed the gradient index of the material properties 

and the shear deformation factor adversely affect the 

natural frequencies (i.e. the frequencies decrease by 

increasing both the material properties gradient factor 

and the shear deformation factor).  

M. Simsek [18], the buckling of the functionally 

graded material was addressed according to the 

Timoshenko model. The material properties followed 

the law of power to vary through two directions as 

thickness and axial. The impacts of the shear 

deformation and the regression index of material 

properties on the buckling were investigated. 

M. H. Ghayesh [19] used Galerkin’s method to solve 

the equation of viscoelastic imperfect functionally 

graded microbeam that was derived according to 

Hamilton’s principle and Timoshenko model . 

A. E. Alshorbagy et al. [20], the Euler vibration 

equation of the graded beam has solved using the 

Galerkin approach, the material followed the form of 

power-law to alter via its properties through directions 

of thickness and axial. 

 H. Deng and W. Cheng  [21] studied the dynamic 

behavior of a non-homogenous beam. The properties of 

a material graded functionally change in two 

dimensions, e.g. thickness and axial by count on the 

exponential law. The kinematic equations for this 

system relied on the Timoshenko theory and 

Hamilton’s precept. The result shows that the axial 

gradient indicator affects the first frequency depending 

on the boundary conditions, while the thickness 

gradient indicator affects the first frequency inversely 

(i.e. the frequency increases with the decrease of the 

gradient indicator and vice versa).   

 

In addition, there are several studies dealing with the 

study of the cracked graded beam as, Y. Liu et al. [22] 

clarified the impact of the single delamination on the 

graded beam that alters exponentially in the direction 

of thickness. To resolve the equation of motion, an 

analytical solution has been relied upon. The reduction 

in the elasticity ratio module causes a drop in natural 

frequencies.  

T. Van Lien et al. [23] studied the vibration of a 

graded beam exposed to multiple cracks. They adopted 

Timoshenko's theorem and Hamilton's principle as the 

basis for deriving the kinematic equations for this 

system. They used the dynamic stiffness method to 

resolve these equations and find natural frequencies. 

They studied the influence of many factors on natural 

frequencies, including gradient power index, beam 

length to beam height ratio, elastic modulus ratio, the 

location of the crack, and the depth of the crack. 

A. Banerjee et al. [24] observed the vibration of a 

cracked graded beam. The Timoshenko theory was 

adopted to develop the vibration equation that solved 

utilizing frequency contour and the model of response 

surface with a genetic algorithm. The properties of 

graded material altered during the beam thickness by 

count on the exponential law. 

S. Kitipornchai   et al. [25], Timoshenko's model was 

adopted to analyze the buckling non-homogeneous 

beam exposed to crack. The drop in the depth of a 

crack causes the rise in natural frequencies and a load 

of buckling.  

 

As well as, A. S. J. Swamidas  et al. [26] 

demonstrated the effect of cracking on the 

homogeneous beam. The kinematic equations were 

formulated using Euler and Timoshenko models and 

disband these equations using the Galerkin approach. 

The results revealed the cracking effect on the beam is 

equal in both models when the ratio of the beam length 

to its height is greater than 10. When the ratio of the 
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length of the beam to its height is less than 10, the 

Timoshenko beam is less rigid than the Euler beam due 

to the large influence of rotational inertia and shear 

deformation. 

Some researchers dealt with the moving graded beam 

as B. Li et al. [27] adopted on  Timoshenko model and 

the principle of Hamilton to analyze the vibration 

equation of a moving graded beam and solved by the 

method of multi scales. The influences of an axially 

speed and stiffness on natural frequencies were 

examined.  

Piovana and Sampaio [28], treated the axially moving 

elastic beam vibrations made of a material graded 

functionally in which the properties change according 

to the exponential law distribution. Euler's theorem was 

used to find the equation of motion which was solved 

by applying the element finite scalar method. The 

results show that fact, the damping is very reasonable 

when the beam is made only of metal and it has been 

heavily influenced by temperature. However, damping 

has a rare effect if the beam consists predominantly of 

structural ceramic substrates.  

C. Ji et al. [29] established the equation of the axial 

movement of a graded nanobeam whose properties 

change based on the distribution of the power-law 

through the direction of the thickness. To find the 

equation of vibration that was resolved by the complex 

mode process, the Euler-Bernoulli theorem and the 

approach of Hamilton were used. The growth in the 

regression index of the material properties causes the 

drop in frequencies and wave velocity, although, in the 

case of a high in axial velocity, the natural frequencies 

and wave velocity increase appears and as shown in the 

results. 

L. Q. Yao et al. [30], the equation of the axial 

movement of graded microbeam whose properties 

change by based on the distribution of the power-law 

through the direction of the thickness was created. The 

method of differential quadrate was used to address the 

vibration equations developed by the principle of 

Hamilton and the theory of Timoshenko. Raising the 

regression index of material property causes the drop in 

natural frequencies, while natural frequencies rise in 

the case of an increase in axial velocity as manifest in 

the results. 

 A. Shariati et al. [31], the vibration equation of the 

viscoelastic moving graded beam in which properties 

change axially based on exponential law distribution 

was derived according to Euler and Rayleigh models. 

The vibration equations were resolved by the Galerkin 

approach. The results explained that a low rotary 

inertia factor leads to make the structure more stable. 

A. Melaibari et al. [32] studied the axial variable load 

acting on a functionally graded beam with simply 

support-fixed, fixed-fixed, simple support and 

cantilever end supports. By relying on the power-law 

of distribution, the properties of a graded beam vary 

during the direction of depth. Shear deformation Reddy 

model is adopted to find equations of motion by 

applying the precept of Hamilton. The method of the 

differential quadrate was used to resolve the vibration 

equations of this system. Several factors affecting the 

mode shape and the buckling load are discussed, 

including the type of load, gradient index of the 

material properties, end supports, and slenderness ratio.  

 

By looking at the previous research that dealt with the 

moving beam issue, we did not find a researcher who 

has dealt with the subject of cracked moving beam 

except M. Sarigül [33] established the vibration 

equation of the axially moving beam that was exposed 

to multi crack by the Euler model. It evident from the 

results that the crack depth adversely affects the natural 

frequencies (meaning that the frequencies decrease 

when the cracking depth increases and vice versa), but 

when the axial velocity is too high, the crack depth 

influences will diminish. 

 

After reviewing the previous literature, it was found 

that there is no researcher who has study a cracked 

graded beam with axial motion, so we attached great 

importance to this topic in this research paper. The 

cracked graded beam moving axially is studied. The 

gradient in material properties during the beam 

thickness was represented based on the law of power. 

The vibration equation is derived based on the 

Rayleigh model by applying the precept of Hamilton. 

The motion equation is solved using the Galerkin 

method. The effects of gradient index, axial speed, the 

depth of the crack, and the crack position on the 

vibration characteristics are illustrated.    

 
2. Theory 

     
     Figure (1) clarified the cracked graded beam with 

axial motion. The axial and thickness axes illustrated 

by symbols X and Z. ν is the axial speed of a 

functionally graded (FG) beam. The graded beam is a 

mixture of ceramic and metal in the intermediate zone 

while the rich ceramic in the top zone and rich metal in 

the bottom zone. The length of a beam is L and the 

height of a beam is ℎ . The crack parameters such as 

depth and position of the crack are given as ɑ and
c

x , 

respectively.  
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 Fig. 1: Moving Graded Beam with Crack  

 

The properties of the gradient materials differ during 

the thickness of the beam by relying on the law of 

power, and this material consists of two basic 

materials, namely metal and ceramic. 

 

A volume fraction of  a graded beam can be written as 

[34]: 
p
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Where z is the mid-plane distance of the functionally 

graded beam
22

h
z

h
 , 

2

h
 and 

2

h
represented 

the thickness of beam at top and bottom, respectively, 

while p is defined as the index of gradient. 
t

V  is the 

volume fraction at the top edge of the beam and 
b

V  is 

the volume fraction at the bottom edge of the beam.  

 

The effective modulus of elasticity and effective 

density for power-law exponent are given as: 
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Substation equations (1) & (2) into equation (3), the 

equations of elasticity modulus and density become: 
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The distance between middle plane and neutral plane is 

given as [35]: 
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In which 
c

E and
m

E are the modulus of elasticity of 

ceramics and metals, respectively.  

 

Rayleigh graded beam's displacements can be written 

as [13] 
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Where ),,(
1

tzxu  and ),,(
2

tzxu  are axial and 

transverse displacements of beam, respectively. 

The transverse displacement of middle plane is 

),( txw while ),( tx represent cross section rotation 

angle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Relationship between thickness direction and 

volume fraction of graded material properties. 

 

The normal strain and stress of functionally graded 

Rayleigh beam are given as [29] 
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In Rayleigh beam theory, 
x

w




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The potential energy due to bending of Rayleigh FGM 

beam is given as [30]: 
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The second moment of inertia I  for rectangular cross-

section can be given as 
12

3
bh

I   

The variation of potential energy can be expressed by 

the following formula:  
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The kinetic energy of Rayleigh FGM beam theory is 

given as [13] 
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In which bhA  , A is cross sectional area  
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Where 
c

 is density of the ceramic and 
m

 is density 

of the metal.  

 

The kinetic energy variation can be expressed as 
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By applying Hamilton's principle which is given in the 

generic form as [36]  
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Substituting the equations (13) and (20) into 

Hamilton's equation (21), integrating by parts and 

setting the coefficients of  0w , the vibration 

equation of axially moving functionally graded 

Rayleigh beam is written as: 
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For dimensionless variables: 
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Substituting equation (22) into equation (21), the 

dimensionless motion equation of a moving graded 

Rayleigh beam can be given as: 
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Where 
r

 is rotation factor, can be present as 

2
Al

I

r
           

 

 2.1 Boundary conditions   
 

    The boundary conditions used in this paper are 

simply supported, and fixed-fixed, which are given in 

the dimensionless form as 

 

  1- Simply support  

       

      At  0)0()0(,0    

                                                                                  (24) 

      At   0)1()1(,1     

 

2- Clamped-clamped 

 

   At  0)0()0(,0    

                                                                                  (25)     

   At   0)1()1(,1                      

 

 

 2.2 Crack modeling  

 

In order to examine the impact of the crack on the 

dynamic behavior of a functionally graded beam, the 

crack model has to be established adopting on fracture 

mechanics theorem.  In the case of a beam cracking as 

shown in figure 1, the beam is dividing into two 

segments. The crack is modeled as rotational spring as 

shown in figure 3, the bending stiffness of the 

rotational spring can be expressed as [37]:  

 

G
K

t

1
                                                                   (26) 

   

Where G is the flexibility caused due to crack and can 

be derived by 
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                                        (27)             

 

Where S is the stress intensity factor (SIF), M is the 

bending moment at the crack, and )( aE is the elastic 

modulus at the crack tip, the stress intensity factor can 

be written as  

 

2
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6
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By substituting eq. (28) into eq. (27), we get  
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Where ɑ represent the crack depth and z=a/h represent 

the crack depth ratio                                                                  

 

After integral G and substituting it into equation (26), 

the compliance of the crack of a homogenous beam can 

be written as [38]: 

 

)/(.)1(6
2
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K

EI
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For a graded beam, the compliance of the crack can be 

written as [38]: 
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2
  is illustrated in equation (11). 

 

Where c is depend on gradient index and crack depth 

ratio. 

 

And the correct crack function (f(a/h)) can be 

expressed as [38]:  
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Fig. 3: Model of crack graded beam as rotational 

spring 

 

After dividing the beam into two parts, the first part is 

integrated from 0 to 
c

x while the second part is 

integrated from 
c

x  to L. Thus, the governing equations 

of cracked graded beam with axial motion are  
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In the non-dimensional formula, the governing 

equations  
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 2.3 Solution Method  

 

In this paper, the Galerkin technique used to solve the 

vibration equations of a cracked graded Rayleigh 

beam. The general form of Galerkin technique is given 

as [31]: 


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n
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rr
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)()(),(                                   (37) 

 

Where )(
r

)(Tq
r

and represents the shape function 

and generalized coordinates, respectively.  

 

The mode shape function of the cracked FG beam can 

be expressed as the sum of the formation function of 

the un-cracked FG beam and the polynomial of (ξ):   
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The continuity conditions and compatibility of the 

cracked graded beam at 
c

   are given by 
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By coupling the boundary in equations (24) & (25) and 

compatibility conditions in eq. (39) and equation (38), 

we get 
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2. Clamped-clamped 
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By substituting equation (37) into equations (35) and 

(36), integration this equations and multiplying by
s

 , 

the equation of motion in matrix form is given as  
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 Where [M] is the mass matrix, [C] is the damping 

matrix, and [K] is the stiffness matrix of a cracked 

moving Rayleigh graded beam are given as: 
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2.4 Stability  

 

The differential equation of the second-order can be 

reduced to the differential equation of the first order, as 

[31] 
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Assuming 
Ti

QeTZ


)( yields the following 

eigenvalue problem 

 

0 JiYQ                                                         (48) 

 

Where J indicates the unity matrix and BDY
1

 . 

Moreover, ω is the complex-valued natural frequency 

of a cracked moving FG Rayleigh beam.  

  

 

3. Results and discussion  

 

   The beam used in this paper is made of functionally 

graded material that it is composed of ceramic and 

metal. Pure ceramic sits on the upper surface of the 

beam, while pure metal sits on the lower surface. The 

relevant parameters and the material properties are 

given as [34]:  
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L=1m, b=0.1m, ℎ =0.1m 

 

Table 1 The graded material properties 

 

Material Elasticity modulus Density  

Steel  210GPa 3
/7800 mkg  

Alumina 390GPa 3
/3960 mkg  

 

 

3.1 Validation  

 

  In this subsection, we will compare the results 

obtained through the equation (23) for Rayleigh graded 

intact beam at V=0, L/h=100, 4

m

c

ratio

E

E
E ,

1

m

c

ratio




 , 0

r
 with the results of Euler 

graded intact beam in ref. [39].  

 

Table 2 Shows the comparison between the results 

(dimensionless natural frequency) of this study with the 

results of the Euler beam with different power index 

 

 

ωi 

 

Method 

P 

0 0.5 5 10 

 

 

ω1  

Present 14.74 16.29 12.49 11.95 

Ref.[39] 14.74 16.29 12.49 11.95 

Error 0% 0% 0% 0% 

 

 

ω2 

Present 78.94 65.17 49.96 47.79 

Ref.[39] 78.94 65.17 49.96 47.79 

Error 0% 0% 0% 0% 

 

 

ω3 

Present 177.6 146.6 112.4 107.5 

Ref.[39] 177.6 146.6 112.4 107.5 

Error  0% 0% 0% 0% 

 

 

3.2 Crack depth ratio impact (a/h)  
   

    The impact of the crack depth on three natural 

frequencies is illustrated in table 3. The natural 

frequencies drop as the depth of crack increase. The 

percentage of the decreasing in the natural frequencies 

is 20.97% for simply supported and 12% for clamped-

clamped.   

 

Table 3 dimensionless natural frequency with different 

crack depth ratio at δ=0.1, p=1, u=1, 
c

x 0.1 

 

 

a/h 

 

Ω 

Boundary conditions  

Simply support Clamped-clamped 

 

 

0 

Ω1 12.9058 29.8538 

Ω2 52.7813 81.8489 

Ω3 118.0067 157.5196 

 

 

0.1 

Ω1 12.8884 29.6259 

Ω2 52.5382 81.7238 

Ω3 116.9730 157.5069 

 

 

0.3 

Ω1 12.7138 28.3073 

Ω2 50.5015 81.0284 

Ω3 109.4602 157.4657 

 

 

0.5 

Ω1 11.9178 26.6547 

Ω2 45.0100 80.2546 

Ω3 97.5487 157.4045 

 

 

3.3 Crack position impact )(
c

x  

 

      The impact of a crack position along the beam on 

the three natural frequencies is examined in table 4. 

The rise in the location of crack causes a range of high 

and low natural frequencies.  

 

Table 4 dimensionless natural frequency with different 

crack depth ratio at δ=0.1, p=1, u=1, a/h=0.2  

 

 

c
x  

 

ωi 

Boundary conditions 

Simply support Clamped-clamped 

 

 

0 

 

ω1 12.9058 27.1684 

ω2 52.7812 75.4766 

ω3 118.0075 147.0692 

 

 

0.1 

ω1 12.8330 29.0621 

ω2 51.8208 81.4155 

ω3 114.0855 157.4928 
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0.3 

ω1 12.4700 29.6544 

ω2 50.6040 78.5565 

ω3 117.5068 155.3742 

 

 

0.5 

ω1 12.2716 28.7680 

ω2 52.7745 81.8434 

ω3 112.8274 150.2547 

 

   

Figure 4 illustrates the influence of crack location on 

first and second frequencies ratios for clamped-

clamped end condition.  Figure (a) realize that the 

maximum ratio of the first frequency at xc = 0.225 and 

xc = 0.775, but the minimum ratio in the end supports 

and the beam middle.  

Also, we notice that the increases in the depth of crack 

causes decreases in the frequencies. The reason is due 

to the influence of the depth of crack on the beam 

stiffness, which decreases with the increase in the crack 

depth, which leads to a drop in the natural frequencies.  

In (4-b) the maximum second frequency ratio (natural 

frequency with crack/natural frequency without crack) 

at the beam middle, xc = 0.175 and xc = 0.825 while 

the minimum frequency ratio at the end supports. 

Also, the crack depth impact on the natural frequency 

ratio is demonstrated. The ratio of the first and second 

frequencies decreases when the depth of crack 

increases because of the decrease of beam stiffness as a 

result of rise in the crack depth leads to decrease in the 

natural frequencies.  

 

(a) 

 

 

 

(b) 

Figure 4 dimensionless natural frequencies ratio of 

cracked C-C FG beam verse dimensionless crack 

location at u=1, δ=0.1, p=1 

Figure 5 elucidate the relationship between the first and 

second frequency ratio (natural freqyenct with crack/ 

natural frequency without crack) and the crack location 

along the beam for simply supported end condition.  

Fig. (5-a) clarified the first frequency ratio 

 
11

/
ncn

  gradually decrease at increase the 

position of crack untile reaches to minmium frequency 

ratio at xc = 0.5 and then it goes back up to maxmium 

ratio in the beam end.  

In (5-b) the maxmium second frequency ratio 

 
22

/
ncn

  at the end supports and middle beam but 

the minmium ratio at xc = 0.225 and xc = 0.775 along 

the beam.  Also, the natural frequency ratios decreases 

at the depth of crack increases for simply supported 

and clamped end conditions as clear in the two figures. 

 

 
(a) 
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(b) 

 

Figure 5 dimensionless natural frequencies ratio of 

cracked S-S FG beam against crack location at u=1, 

δ=0.1, p=1 

 

Figures 6 and 7 show that the first and second 

frequency ratio (natural frequency with crack/natural 

frequency without crack) affected by the axial speed, 

the increase of the axial speed from 1 to 3 causes a 

drop in the ratio of natural frequencies for fixed-fixed 

and simply supported end conditions because the 

raising in the axial speed causes the lowering  in the 

beam stiffness that leads to diminshe the natural 

frequency ratio.  

 

 

 

 

 

 

 

 

Figure 6 dimensionless natural frequencies ratio of 

cracked S-S FG beam at L/h = 10, a/h = 0.3 
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Figure 7 dimensionless natural frequencies ratio of C-

C cracked graded beam at L/h = 10, a/h = 0.3 

Figures 8 and 9 show the relationship between the ratio 

of natural frequencies (the natural frequency with 

cracking to the natural frequency without cracking) and 

the crack position along the beam and for different 

values of the power index for two boundary condition 

such as simply supported and fixed-fixed. When the 

property power index increases from 1 to 10, this leads 

to a decrease in the elastic modulus (i.e., an increase in 

metal components and a decrease in ceramic 

components) and the stiffness decreases as a result, and 

the beam becomes flexible, and thus the natural 

frequencies decreases.  

 

 
 

 
 

Figure 8 dimensionless natural frequencies ratio of 

cracked S-S FG beam at δ=0.1, u=1, a/h=0.4 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 9 dimensionless natural frequency ratio of C-C 

cracked graded beam at δ=0.1, u=1, a/h=0.2   

 

 

4. Conclusions  

 

   Free vibration of a moving Rayleigh graded beam 

with crack is investigated. Galerkin’s approach is used 

to analyze the equation of vibration of this system 

which is modeled by the principle of Hamilton. The 

depth and position of the crack, axial speed, and 

gradient property index influences on the 

characteristics of vibration are discussed. The main 

conclusions from the results of this study can 

summarize it as follows:    

 

 

1. The first three natural frequencies decrease by 

increasing the axial velocity at a certain depth and 

location of the beam due to the impact of velocity on 

the stiffness of the beam, causing the beam to deflect, 
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and thus the natural frequencies to decrease for simply 

supported and clamped-clamped end conditions. 

 

2. The increase in the gradient index of the material 

properties causes natural frequencies dropping due to 

the fall in the elastic modulus, which makes the beam 

more flexible, which leads to natural frequencies 

reducing for simply supported and fixed-fixed end 

conditions.   

 

3. When the crack depth raises, the beam stiffness 

decreases, and beam deflection occurs as a result, thus 

reducing the normal frequencies for fixed and simply 

supported end conditions.  

  

 

List of symbols  

 

L                 The length of the beam (m) 

b                  The width of the beam (m) 

ℎ                   The thickness of the beam (m) 

ɑ                  Crack depth (m) 

p                  Power-law exponent  

v                  Velocity of a moving beam (m/s) 


b                Distance of a middle & neutral plane (m)                      

c
x                Crack position (m) 

A                  Area (
2

m ) 

E                 Modulus of elasticity (
2

/ mN )  

                Density (
3

/ mkg ) 

r
               Rotation factor 

E
P               Potential energy (J) 

E
K              Kinetic energy (J) 

t
V                Volume fraction at the beam top  

b
V                Volume fraction at the beam bottom   

n
               Natural frequency of an intact beam (1/s) 

nc
             Natural frequency of a cracked beam (1/s)  
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