The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al-Nasiriyah City

Feras A. R. Temimi^{1*}, Ameer Hadi M. Ali², Amenah H. F. Obaidi³

¹ Assistant Instructor, Civil Engineering Department, College of Engineering, University of Thi-Qar, Iraq, firas-a@utq.edu.iq ² Instructor, Civil Engineering Department, College of Engineering, University of Thi-Qar, Iraq, ameer-hadi@utq.edu.iq

³ Assistant Instructor, Field Crop Department, Agriculture & Marshes College, University of Thi-Qar, Iraq, am@utq.edu.iq

ABSTRACT :The pavement condition index (PCI) method provides a simple way for determining maintenance and repair (M-R) needs and priorities. The PCI procedure was developed by the U.S. Army Corps of Engineers in 1997. In this study, an attempt was made to adopt the PCI method to evaluate the pavement state and suggest suitable maintenance and repair (M-and-R) works for the 13 damaged roads. The area of the study is roads net damaged with raveling distress in Al-Hadharat Quarter in the city of Nasiriyah which located in the south of Iraq. The pavement had divided into branches which sub-divided into sections. The type and severity of pavement distress were assessed by visual inspection. The distress data used to calculate the PCI for each sample unit. Then the PCI of the whole pavement section is determined. The calculated PCI was assessed with the pavement condition rating. The results show that the PCI Rating evaluation was ranging from fair to poor roads, very poor and one case of serious, but never reached to fail case in any of the studied roads. The study shows that the (PCI) method provides a suitable measure of the present condition of the pavement. The main conclusion of the study is the ability to conduct the PCI method to diagnose pavement distresses and evaluate pavement condition in the studied area. The use of (PCI) method is efficient in the prior evaluation of road condition in order to implement suitable maintenance to the distressed pavement.

KEYWORDS:

Pavement Condition Index (PCI), Pavement Distress, Raveling Distress, Distress Severity, Inspection data sheet

1. INTRODUCTION..

Road networks are an essential part of the development of a country; therefore, they must be maintained in functional condition. Maintenance of the road involves prior evaluation of road condition in order to implement suitable maintenance so accurate evaluation of road condition should be done before the application of maintenance process.

As the road pavement is one of the basic parts of the road infrastructure, continuous maintenance and rehabilitation (M-and-R) works should be conducted periodically to prevent deterioration caused by repetitive traffic loading and environmental factors.

The pavement condition index (PCI) method is a numerical indicator that provides a measure of the present condition of the pavement based on the distress observed on the surface of the pavement. It provides a simple way for determining maintenance and repair (M-R) ⁽⁵⁾ needs and priorities. The ASTM covers standard practice for this procedure under the designation: D 6433 – 09.

2. HISTORICAL BACKGROUND

The PCI procedure was developed by the U.S. Army Corps of Engineers in 1997⁽¹⁾. In 2003 Galehouse et al list some of the benefits of PCI Which include the identification of the need for immediate M-and-R of roads; development of a road network, preventive maintenance strategies and budgets; and evaluation of pavement materials and designs⁽²⁾ while in 2011 Hajj, et al clarify that Although the PCI rating of a roadway which is based on the observed surface distresses is not a direct measure of structural capacity, skid resistance or road roughness; but, it is an objective tool for assessing the M-and- R needs of a roadway section with respect to an entire pavement system ⁽³⁾. In 2014 a case study was conducted in Hilla city by Jassim A. Alwan to prepare a site & laboratory studying to define the distresses and the pavement condition for one of the main roads by defining pavement distresses and their arising causes by standard American Pavement Condition Index (PCI) method and compare pavement condition definition with the familiar classical method ⁽⁴⁾.

As the PCI procedure deals with the subject of pavement distress identification most comprehensively and is based on a sound statistical technique of pavement sampling; Prof. Dr Fareed M.A. Karim et al used the PCI procedure to evaluate the pavement condition in terms of the surface distresses in Yemen in 2016⁽⁵⁾.

In 2017 Mohd. Shoyeb Ansari and A. R. Kambekar demonstrate a methodology for evaluating the condition of the road. The proposed study assumes that the condition of road follows a probabilistic behavior ranging from the best condition to worst and attempt to evaluate the condition of the road using surface distress survey. The probabilistic pavement condition index (PCI) is then evaluated. The study concluded that the proposed method can be used where limited fund and less time are available for inspection and maintenance of roads ⁽⁶⁾. In the same year Ewadh et. al submitted a paper to develop a pavement condition index model using PAVER 6.5.7 for a flexible pavement urban road in the Kerbala city center. Data collected for pavement distress (type, dimension, and severity) were used to find PCI. The result of the prediction model of PCI shows that it is valid to be used in

², Amenah H. F. Obaidi

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al-Nasiriyah City

the prediction of the condition of pavement for the same famil

RIPTION OF STUDY AREA 3.1

The area of the study is a roads net in Al-Hadharat Quarter in the city of Nasiriyah which located in the south of Iraq as shown in Figure 1.

Figure 1. Location of the Study Area (Al-Hadharat Quarter)

The total area of the quarter is 130,000 m^2 and contain 725 home with other service construction. There are 13 roads in the quarter having a total length of 1,308.69 m and total area equal to 1, 1819.61 m² show different level of raveling distress (Fig.2). In this study, an attempt was made to adopt the PCI method to evaluate the pavement state and suggest suitable maintenance and repair (M-and-R) works for the 13 damaged roads.

Figure 2. The Distressed roads in the Quarter **4.METHODOLOGY**

The Pavement Condition Index (PCI) method is adopted in this study. The pavement is separated into branches that are detached into sections. Each section is divided into sample units. The type and severity of pavement distress is assessed by visual inspection of the pavement sample units. The distress data are used to calculate the PCI for each sample unit. Then the PCI of the whole pavement section is determined ⁽¹⁾. The calculated PCI will be assessed with the pavement condition ratinga verbal description of pavement condition as a function of the PCI value that varies from "failed" to "good" as shown in Fig.3 to identify the level and severity of the distresses in order to select the suitable remedies.

Figure 3. Pavement Condition Index (PCI) Rating Scale⁽¹⁾

Raveling is one from 19 distresses which are included in the PCI method with three levels of distresses severity (low, medium and high) are classified for each distress type. These three severity levels of raveling distress according to the PCI method are shown in the Figure 4.

Feras A. R. Temimi^{1*}, Ameer Hadi M. Ali², Amenah H. F. Obaidi³

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al-Nasiriyah City

Fig(4A) High–Severity Fig (4B) Medium –Severity Fig(4C)High severity

Figure 4. Raveling Distresses Severity

5. THE FIELD STUDY

Several site investigations were carried out to Al-Hadharat Quarter in the city of Nasiriyah to collect the required data about raveling distresses. The studied area was divided into sections that have certain consistent characteristics throughout their area.

The total number of deteriorated roads were 13. A visual inspection of the pavement surface with field measurements provided valuable information which are used to evaluate the current pavement condition. The collected information was summarized in the Table 1.

Road No.	Road Map Code	Road Width (m)	Road Length (m)	No. of Samples	Sample Dimensi on (m*m)
1	(B-20)	9	84.6	9	9 * 10
2	(C - 46)	7	77.33	8	7 * 10
3	(C - 45)	7	120.41	6	7 * 20
4	(B-13)	9	143.33	8	9 * 20
5	(B-14)	9	136.67	10	9 * 15
6	(B-15)	9	130.44	7	9 * 20
7	(D-04)	12	229.72	12	12 * 20
8	(C - 48)	7	63.07	5	7 * 15
9	(C - 33)	7	63.07	5	7 * 15
10	(B-32)	9	69.74	4	9 * 20
11	(B-31)	9	76.68	4	9 * 20
12	(B-30)	9	83.63	5	9 * 20
13	(B-47)	9	30	3	9 * 10

Table 1. ASPHALT PAVEMENT SURVEYEDROADS DETAILS

During a PCI survey, visible signs of deterioration were recorded and analyzed to determine the distress density which was calculated as follows:

Distress Density = (Distress amount in m² (ft²)/ Sample unit area in m² (ft²)) *100%

For each density the deduct value is calculated from Figure 5 which is presented by PCI method. ⁽¹⁾

The total deducts values (TDV) and maximum corrected deduct values (CDV) were obtained in order to estimate the PCI value as recommended by PCI method ⁽¹⁾.

Figure 5. Deduct Value % of Weathering & Raveling Distress ⁽¹⁾

All the collected data, field measurements, estimated PCI index and PCI Rating Evaluation were summarized in tables as shown in Table 2 which represents the inspection data sheet for the studied roads. The diagnosed raveling distresses were classified according to their severity to (low, medium and high).

Table 2. Asphalt Pavement Inspection Data Sheet

², Amenah H. F. Obaidi ³

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al- Nasiriyah City

6. DATA ANALYSIS AND ASSESSMENT

Throughout the site surveys and the collected data which were analyzed according to the PCI method, the results show that the PCI Rating evaluation was ranging from fair in two roads (no.9 & no.13), to poor in three roads (no.3, no.5 & no.10), very poor in seven roads (no.1, no.2, no.4, no.6, no.7, no.11 and no.12) and one case of serious in road no.8, but never reached to fail case in any of the studied roads .The fair state is clarified through road number (9) as shown in Figure 6& Table 3.

Figure 6. Raveling Distress severity Road No. (9) (Fair condition)

	The Ro	ad Map	Code No.			Re	oad No.9 -	((<mark>7 - 33</mark>)		
	Т	he Desc	ribe			Width (m)	Length (m)		Total Area (m^2)		
The	Data of	the Tota		7	63		,	441			
	0	Sample U				7	15			105	
	Distress	Survey	Гуре			Raveling	Z			Deduci	
No	Sta.	Area No.	Severity Status	Widt m		Length m	Severity Area m ²	1	Density %	Value %	
		I # 1	Low	6		8	48		10.9	5	
1	0+0 to 0+15	I # 2	Med.	3		5	15		3.4 11		
		I # 3	High	3		5	15	15 3.		25	
2	0+15 to 0+30	I # 1	Low	6		12	72		16.3	6.5	
3	0+30 to	I # 1	Low	5.60	5	10	56.6		12.8	5.5	
5	0+45	I # 2	Med.	6	5		30		6.8	15	
4	0+45 to 0+60	I # 1	Low	7		15	105		23.8	11	
5	0+60 to 0+63	I # 1	Med.	12		3	36		8.2	16.5	
	Total Values 377.6 85.6 96										
Des	cribe	Severit Leve	-	nsity atio		Highest Val			HDV	25	

	The R	oad l	Мар	Code	No.							
		The I	-					Width (m)	Leng (m			tal Area (m2)
7	The Da	Še	ectio			d		()				
					ze			Raveling				
No	Sta	Ar No	ea	Serency maan		h	Length m	Severity Area m ²	Density %		Deduct Value %	
		#	1	Lov	v							
		#		Medii								
		#	3 Tot	Hig al Val								
			100	ai vai	ues		_	TT 1 . 1				
D	Describe		Sev	erity	D.			Highest I Valı		H	DV	
De			Level Densi		ensity	Max. Allow. No. of Deducts			n	п		
Low	Ratio	%						Number of Deduct Value		n	D	
Mediı	um Ratic	%					Number of Deduct Value >2		4	1		
High	Ratio	%						Max. Co Deduct		Cl	DV	
Total	Ratio	%					C	Paven Conditior		P	CI	
	Pave	men	t Ev	aluati	on			Resu	lt			
					Λ	Max. Al De		v. No. of cts	т	7.8	39	
v Ratio %	74	.3		63.8	Number Ve		• of alı		nD	9)	
edium utio %	21	.7		18.4	1	Number Valı		> 2	q	9)	
High 1tio %	4	!		3.4		Max. Deduc			CDV	4	4	
Fotal atio %	10	00		85.6			Pavement Condition Index		PCI	50	6	

The poor state is explained through road number (3) as explained in Figure 7 and Table 4.

Result

Fair

Pavement Evaluation

Figure 7. Raveling Distress severity Road No. (3) (Poor condition)

Table 4. Asphalt Pavement Inspection Data Sheet of
Road No. (3) (Poor condition)

Feras A. R. Temimi^{1*}, Ameer Hadi M. Ali², Amenah H. F. Obaidi³

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al- Nasiriyah City

	The Re	oad Map	o Code No				<u>3) (C - 45</u>)		to 0+80	C# 2	Medium	0.5	1.5	0.75	0.089	4
	Т	he Des	cribe		Width m	Lengtl m	¹ Total.	Total Area m		0+80 to	C# 1	Low	1	10	10	1.186	1.8
Th	e Data oj	f the Tot	al Road S	ection	7	120.4	4 84	2.87		1+00							
	The	Sample	Unit Size		7	20	1	40	6	1+00 to	C# 1	Medium	2	14	28	3.322	2.5
	Distress	Survey T	ype		Raveling					1+20	C# 2	High	3	10	30	3.559	3
	<i>a</i>	Area	Severity	Widh	Length	Severity	Density %	Dedu Valu			Tota	ıl Value	S	-	227.8	27.02	118.1
No	Station	No.	Status	т	m	Area m ²	70	%	D	•1	Sever	rity D		Highest De		HDV	- 29
	0+00	C#1	Low	1	10	10	1.186	1.8	De	Describe		Level Density		Max. Allow. No. of Deducts		т	7.52
1	to	C# 2	Medium	0.5	10	5	0.593	8	Low	Ratio %	43.	9			f Deduct ue	nD	14
	0+20	C# 3	High	5.7	6.5	37	4.396	29	M	ledium	26	7 1	0.5	Number o			0
	0+20	C# 1	Low	0.5	10	5	0.593	1.5	F	atio%	26.	/ 1	0.5	Value		q	9
2	to	C# 2	Medium	2	10	20	2.373	10	High	h Ratio %	29	4 1	1.5	Max. Corre Val		CDV	52
	0+40	C# 3	High	1.5	10	15	1.78	20	Tot	tal Ratio	100	2 2	27	Pavement		PCI	48
	0+40	C# 1	Low	0.5	10	5	0.593	1.5		%				Ind		-	_
3	to	C# 2	Medium	3.5	10	35	4.152	13	Pavement Evaluation Result Po								
	0+60	C# 3	High	1.5	10	15	1.78	20	$\frac{1}{20}$ While the very poor state is explained through road					ad			
4	0+60	C# 1	Low	1.5	8	12	1.424	2	2 mmmber (1) as explained in Figure 8 and Table 5								

	The Ro	ad Map Co	de No			ŀ	Roa	d No.(1)-	(R - 20)			
					W	idth		Length		Area		
	Th	e Descrik	ре		(m)		(m)	(n	n^2)		
The	Data of	the Total R	oad Secti	on		9		84.6	761	.40		
	The Sc	ample Uni	it Size		9		10	9	0			
	Distre	ss Survey	Type			Rav	elin	ıg		Deduct		
No	Sample	Area	Severity	Wie	lth	Lengt	h	Severity Area	Density %	Value		
No	Station		Status	1	п	m		m ²	,	%		
	0+00	A1		0.	6	10		6				
1	to	A2	Low	2.		2		5	5.38	5		
	0+10	A3		Ĵ		10		30				
	0+10	A1		2		7.05	5	14.1				
2	to	A2	Low	1.		10		16	5.79	4.5		
	0+20	A3		1.		10		14				
2	0+20	<u>A1</u>	T	1.		10		17	6.17			
3	to 0+30	A2 A3	Low	1. 1.		10 10		15 15	3	4		
		A3 A1		1. 1.		10		15				
4	0+30 to	AI A2	Low	1.		10		14	5.25	3		
7	0+40	A 3	LOW	1.		10		10	5.25	3		
	0+40	Al		1.		10		10				
5	to	A2	Low	-		10		11	2.89	2.5		
	0+50			1.1								
6	0+50 to	A 1	Low	1		10		10	1.31	1.8		
v	0+60	A 2	Med.	1.	3	5		6.5	0.85	8.5		
	0+60	A 1	Low	1.	1	10		11	3.41	3		
7	to	A 2	Med.	1.7		10		17	2.23	10		
	0+70	A 3	Low	1.	5	10		5 10 15		15		
	0+70	A 1	Low	1		3		3	0.39	1		
8	to	A 2	Med.	0.	5	3		1.5	0.19	5.5		
	0+80	A 3	High	9)	10		90	11.8	43.5		
	0+80	A 1	Low	1.	2	10		12	1.58	2		
9	$to \\ 0+90$	A 2	High	8.	3	7		58.1	7.63	37		
	0+90	Tota	Values					418.2	54.9	131.3		
		10.00				Highes	t D					
Dag	cribe	Severity	Dam			0	ılue		HDV	43.5		
Des	cribe	Level	Den	nsity				No. of	т	6.19		
Lau	Ratio		-			Dec Iumber				0.17		
	%	58.6	32.1	32.167			ılue		nD	14		
Me	dium	6	3.2	3.284		lumber			a	11		
	tio %	0	5.20	94		Valu			q	11		
	ligh tio %	35.4	19.4	151	Max. Correct				CDV	65		
	otal	100	51	0	Deduct Value Pavement Condition				DCI	25		
Rai	tio %	100	54.	.9	Pavement Condition Index				PCI	35		
	Paven	ent Evalı	uation			Re	su	lt	Very	Poor		

A-Low - Severity Raveling B-Medium - Severity Raveling ti C-High - Severity Raveling Road No. (1) (very poor)

And serious condition is represented by road no. (8) as illustrated in Figure 9 and Table 6.

Figure 9. Raveling Distress severity Road No. (8) (Serious condition)

Table 6. Asphalt Pavement Inspection Data Sheet of Road No. (8) (Serious condition)

The main causes of raveling distress may be belonging to:

², Amenah H. F. Obaidi ³

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al- Nasiriyah City

- 1- Lack of binding due to use inappropriate binder or less than required.
- 2- The use of dirty and or fragile aggregate.

3- Weakness in the asphalt layer as a result of improper compaction and delay in laying time after mixing.

Road No.	Road Map Code	Distress Density (%)	PCI Index	PCI Rating Evaluation	Suggested Pavement Treatment
1	B-20	54.925	35	Very Poor	Slurry Seal
2	C-46	49.877	39	Very Poor	Slurry Seal
3	C-45	27.026	48	Poor	Fog Seal
4	B-13	51.593	37	Very Poor	Slurry Seal
5	B-14	66.451	54	Poor	Fog Seal
6	B-15	76.152	36	Very Poor	Slurry Seal
7	D-04	85.592	27	Very Poor	Slurry Seal
8	C-48	76.331	21	Serious	Slurry Seal
9	C-33	84.712	56	Fair	Not Need
10	B-32	82.050	44	Poor	Fog Seal
11	B-31	88.245	29.5	Very Poor	Slurry Seal
12	B-30	66.428	27	Very Poor	Slurry Seal
13	B-47	88.888	68	Fair	Not Need
т	1	. 1		C 1 1	

4- Improper heating and mixing of asphalt mixture. Table (7) below, shows all roads evaluation according to PCI method.

Table 7. Served Roads Evaluation Pavement Condition

Index (PCI)

No	Road Map Code	Road Width (m)	Road Length (m)	Road Area (m ²)	Distress Density (%)	PCI INDEX	PCI RATING Evaluation
1	B-20	9	84.6	761.4	54.93	35	Very Poor
2	C46	7	77.33	541.3	49.88	39	Very Poor
3	C-45	7	120.4	842.8	27.02	48	Poor
4	B- 13	9	143.3	1,290	51.59	37	Very Poor
5	B- 14	9	136.6	1,230	66.45	54	Poor
6	B-15	9	130.4	1,174	76.15	36	Very Poor
7	D-04	12	229.7	2,757	85.59	27	Very Poor
8	C- 48	7	63.07	441.5	76.33	21	Serious
9	C- 33	7	63.07	441.5	84.71	56	Fair
10	B- 32	9	69.74	627.7	82.05	44	Poor
11	B-31	9	76.68	690.1	88.24	29.5	Very Poor
12	B-3 0	9	83.63	752.7	66.43	27	Very Poor

13 B-47 9 30	270.0	88.88	68	Fair
--------------	-------	-------	----	------

The possible remedies for each road are depending upon the distress severity therefore the suggested treatment can be listed in Table 8.

The Road Map Code No.					Road No. 8 - (C - 48)						
	The Describe					<i>'idth</i>	Length	Total			
					(m)		(m)	(n	,		
The		of the Total		on	7		63.07	441			
		Sample Ur	-			7	15	10	05		
	Dist	ress Surve	ey Type				Raveling				
No	Sta.	Area No.	Severity Status	Width m	'n	Length m	Severity Area m ²	Density %	Deduct Value %		
		H# 1	Low	3		6	18	4.077	3		
1	0+0 to 0+1	H# 2	Med	3		6	18	4.077	12.5		
	0.11	H# 3	High	5		7	35	7.928	37.5		
2	0+1: to 0+30	H# 1	Med	6		12	72	16.31	22.5		
3	0+30 to 0+4	H# 1	Med	6		12	72	16.31	22.5		
4	0+4.	5 H# 1	Med	6		12	72	16.31	22.5		
4	to 0+60	0 H# 2	High	5		7	35	7.928	37.5		
5`	0+60 to 0+6.	H# 1	High	5		3	15	3.4	6.5		
		Total	Area Va	lues			337	76.33	164.5		
Desc	ribe	Severity	Density	Hig	ghe.	st Deduct	Value	HDV	44		
2.000		Level		Max.	All	low. No. of	Deducts	т	6.14		
Lo Rati	0%	5.3	4.077	Number of Deduct Value				nD	7		
Med Rati		69.4	53	Number of Deduct Value >				q	7		
Hi Rati		25.2	19.2	Max. Correct Deduct V			uct Value	CDV	79		
To Rati	0%	100	76.3	Pavement Condition Index				PCI	21		
Pa	veme	ent Evalı	ıation			Result		Serious			

 Table 8. Served Roads Evaluation Pavement Condition Index (PCI)

No.	Road Condition	Treatment
1	Fair	
2	Poor	Fog Seal
3	Very Poor	Slurry Seal
4	Serious	Slurry Seal

The roads with fair condition didn't need for instantaneous treatment while emulsified asphalts (fog seal) may be used to repair the poor condition roads. The fog seal increases adhesion between mixture components. The suitable deal with serious deteriorated roads is the use of slurry seal consists of slow setting emulsion with well graded small gravel and filler. The slurry seal (3-6 mm

², Amenah H. F. Obaidi ³

The Pavement Condition Index (PCI) Method for Evaluating Pavement Distresses of The Roads in Iraq- A Case Study in Al-Nasiriyah City

thickness) is used to fill cracks and holes and outlaw disintegration of mixture fragments.

Table (9) shows final summery for all 13 considered roads in the study.

Table 9. The Served Roads Summary

7. CONCLUSION

In this study, an attempt was made to adopt the PCI method to evaluate the pavement state and suggest suitable maintenance and repair for the 13 damaged roads. The results show that the PCI Rating evaluation was ranging from fair to poor roads, very poor and one case of serious, but never reached to fail case in any of the studied roads.

The study shows that the (PCI) method provides a suitable measure of the present condition of the pavement based on the distress observed on the surface of the pavement. The main conclusion of the study is the ability to conduct the PCI method to diagnose pavement distresses and evaluate pavement condition in the studied area. The use of (PCI) method is efficient in the prior evaluation of road condition in order to implement suitable maintenance to the distressed pavement.

8. RECOMMENDATIONS

Throughout site investigation, distresses diagnosis and pavement assessment according to PCI: Pavement Condition Index method the main recommendations can be listed below:

- **1-** Treat raveling distress in all the studied roads according to the suggested treatments.
- **2-** It is necessary to clean the deteriorated sections with suitable manner such as pumped air and remove all disintegrated materials before starting treatment.
- **3-** It is required to conform all requirements and technical specifications for laying and compaction according to Iraqi specifications (R8 & R9).
- 4- More studies about the use of PCI method in Iraq should be conducted.

8. REFRENCES

- [1] ASTM D6433-09. (2009). American Society for Testing and Materials, "Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys", United States.
- [2] Galehouse, L., Moulthrop, J. S., & Hicks, R. G. (2003). "Principles for Pavement Preservations: Definitions, Benefits, Issues and Barriers. TR News" 228, pp. 4-9 (via synthesis 343).
- [3] Hajj, E., Loria, L., Sebaaly, P., Borroel, C., & Leiva, P. (2011). "Optimum Time for Application of Slurry Seal to Asphalt Concrete Pavements" Paper No. 11-4071, United States.
- [4] الاسفلتي التبليط بابل:" عيوب التقني المعهد / مدرس علوان / عطية جاسم [4] 1. ٨ / العدد المجلد/الهندسية للعلوم القادسية معالجته" مجلة وامكانية
- [5] Prof. Dr Fareed M.A. Karim, Dr Khaled Abdul Haleem Rubasi, and Dr Ali Abdo Saleh. "The Road

- [6] Pavement Condition Index (PCI) Evaluation and Maintenance: ACase Study of Yemen "Organization, Technology and Management in Construction (2016); 8: 1446–1455.
- [7] Mohd.Shoyeb Ansari and A. R. Kambekar, Ph.D.", Development of Probabilistic Methodology for Evaluating Pavement Condition Index for Flexible Pavement", ASCE India Conference (2017).
- [8] Hussein Ali Ewadh, Raid Rahman Almuhanna, Saja Jasim Alasadi " Development of Pavement Condition Index Model Using PAVER 6.5.7 for Flexible Pavement Urban Roads in Kerbala City" Journal of Babylon University/Engineering Sciences / No.(5) / Vol.(25): (2017).