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Abstract 

Numerical simulation of viscoelastic fluid flow of the upper-convected Maxwell (UCM) type by finite volume on 

collected grid arrangement for the steady laminar flow through the 1:4 planer expansion has been obtain for a range of 

Deborah numbers. The conservation equations and the constitutive equations have been solved by using the finite volume 

numerical method on a collected grid arrangement with using the power low scheme for the momentum equations and 

the upwind scheme for the constitutive equations. The solution of the non-linear algebraic equation from the 

discretization process was obtained by using the Tri-Diagonal Matrix Algorithm (TDMA). The solution was verified with 

grid refinement. It is discovered that increasing the elasticity level lead to increasing the pressure, stresses and decreases 

the recirculation zones, where increasing Deborah number from 0 to 1.5 causes the pressure to increase by 2.6%. The 

finite volume method (FVM) shows that it capable for the numerical simulation of viscoelastic fluid flow with high speed 

to get the final solution and low computational cost.   
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Nomenclature: 

Symbol Meaning Units 

H 
Half height of the 

channel 
m 

u X-axis velocity m/s 

v Y-axis velocity m/s 

P pressure N/m2 

De Deborah number ----- 

Re Reynolds number ---- 

 

Greek symbols: 

Symbol Meaning Units 

ρ density Kg/m3 

𝜏𝑥𝑥 X-axis stress N/m2 

𝜏𝑦𝑦 Y-axis stress N/m2 

𝜏𝑥𝑦 Shear stress N/m2 

𝜆 Relaxation time ----- 

𝜙 General variable ----- 

Γ 
Diffusion 

coefficient 
---- 

∇ Divergence signs ---- 

 

Abbreviation: 

Abbreviation Meaning 

FVM Finite volume method 

FEM Finite element method 

CV Control volume 

UCM Upper convicted Maxwell 

FENE-P 

Finitely Extensible 

Nonlinear Elastic in the 

Peterlin approximation  

 

FENE-CR 
 Finitely Extensible 

Nonlinear Elastic by 

Chilcott and Rallison 

TDMA 
Tri-Diagonal Matrix 

Algorithm 

CFD 
Computational fluid 

dynamics 

E East 

W West 

S South 

N north 

 

  1- Introduction: 

   The simulation of viscoelastic fluid flows is an important 

field and it is a field of computational fluid dynamic 

(CFD). The simulation of viscoelastic fluid as well as CFD 

aims to find the fluid flow variables at different condition 

such as the pressure field, the stresses and the velocity. 

This kind of simulations have an important impact and 

consideration in polymers manufacturing (the polymer’s 

considered as viscoelastic fluid), where the simulations 

gives an important information about the flow variables. 

However ,in this paper a results are obtained for the 

simulation of the UCM viscoelastic fluid model by using 

the finite volume method. The simulation has been done in 

a 4:1 expansion duct in 2D flow for the creeping flow 

(Re=0.1) ,the simulation have been obtain to Deborah 

number (De) up to 1.5.  

     In the literature a verity of simulations have been 

obtain for different viscoelastic models. An effort was 

done by using the finite difference method (FDM) (Gasti, 

1975). (Chang, 1979) Also they used the FEM to get the 

results for their model. A curt result also has been obtained 

by using spectral finite element methods (S-FEM) (Beris, 

1987). In that respect, it was inevitable that the finite 

volume method (FVM) would also be tried within the 

http://jeng.utq.edu.iq/
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viscoelastic context, since this method is well-known and 

has been widely used with success In other fields of 

computational fluid mechanics. The simulation by using 

FVM is now widely used in computational fluid dynamics 

and for the simulation of viscoelastic fluids flow because 

its simplicity in writing the code for the simulation and it 

gives results in small time compared to FEM (Oliveira, 

2003).  

      There are a wide range of research on the simulation of 

viscoelastic fluid flow by using FVM like (Missirlis, 1998) 

whose his simulation done for the UCM model on 

collected grid arrangement of a 1:4 sudden planar 

expansion in the range of De number (0,1.2 and 3). Also 

for the UCM model (Whiteman, 1992) who used the 

staggered grid arrangement ,his simulation done for the 

range of Weissenberg numbers (0,1,2.4) also in the 

staggered grid (FU Chun-quan, 2009) he have been use the 

same model for the simulation of the viscoelastic flow in 

an abrupt expansion ,his simulation done for the range of 

Weissenberg numbers (0,0.6,1.2,3.2) for other viscoelastic 

model. Oliveira, 2003 have been used the modified FENE-

CR model for the simulation of planer expansion with 1:3 

expansion ratio his work done for a wide range of Re 

number (0.1 to 100) and Weissenberg number up to 2 . 

Another model used by (Kerim Yapicia, 2010) is the 

Oldroyd-B viscoelastic fluid flow model his simulation 

was steady laminar flow in a lid-driven square cavity for a 

wide range of Reynolds.  

   In this work the simulation is done for the UCM 

viscoelastic fluid model by using FVM on collected grid 

arrangement through 1:4 planer expansions and steady 

two-dimensional flow. Thus the problem of interest for the 

1:4 planer expansion is shown in fig.1 and the simulation 

is for the creeping flow, where (Re=0.1). 

 

 

 

 

 

 

 

 

 

 

Where H=0.03 m. 

 

 

 

 

2. Mathematical modeling 

   The basic equation that governing the flow of the UCM 

fluid flow in Cartesian, two-dimensional, laminar and 

steady flow form are: 

The continuity equation [2]: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                               (1) 

𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣𝑢) = −

𝜕𝑃

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
        (2) 

𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑦
(𝜌𝑣𝑣) = −

𝜕𝑃

𝜕𝑦
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
    (3) 

 

 

And the constitutive equations [8]: 
𝜕

𝜕𝑥
(𝜆𝑢𝜏𝑥𝑥) +

𝜕

𝜕𝑦
(𝜆𝑣𝜏𝑥𝑥) = 2𝜇

𝜕𝑢

𝜕𝑥
− (1 − 2𝜆

𝜕𝑢

𝜕𝑥
) 𝜏𝑥𝑥 +

2𝜆
𝜕𝑢

𝜕𝑦
𝜏𝑥𝑦     (4)  

𝜕

𝜕𝑥
(𝜆𝑢𝜏𝑦𝑦) +

𝜕

𝜕𝑦
(𝜆𝑣𝜏𝑦𝑦) = 2𝜇

𝜕𝑣

𝜕𝑦
− (1 − 2𝜆

𝜕𝑣

𝜕𝑦
) 𝜏𝑦𝑦 +

2𝜆
𝜕𝑣

𝜕𝑥
𝜏𝑥𝑦     (5)  

 
𝜕

𝜕𝑥
(𝜆𝑢𝜏𝑥𝑦) +

𝜕

𝜕𝑦
(𝜆𝑣𝜏𝑥𝑦) = 2𝜇 (

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) − 𝜏𝑥𝑦 +

𝜆
𝜕𝑣

𝜕𝑥
𝜏𝑥𝑥 + 𝜆

𝜕𝑢

𝜕𝑦
𝜏𝑦𝑦   (6)  

In these equations, u is the x-component velocity vector,v 

is the y-component velocity vector,P is the pressure,τ is 

the stress,μ is the dynamic viscosity of the fluid, λ is the 

relaxation time and ρ is the density. 

The dimensionless parameters used in this simulation for 

the viscoelastic fluid are: 

Deborah number (De) [8]: 

𝐷𝑒 =
𝜆𝑈

𝐻
                                   (7)  

 

And Reynolds number (Re) [2]: 

 

𝑅𝑒 =
𝜌𝑈𝐻

𝜇
                                  (8)  

Where U is the velocity and H is the length. 

 

3. The numerical solution  

  By using the FVM The constitutive Eq. (3) and the 

conservation Eqs. (1) and (2) will be solved together .In 

finite volume method which is explained in [13], the 

domain of solution first is divided to small element called 

finite volume and the conservation equations are 

integrated over this element. By using gausses theorem to 

transfer the volume integration of the gradient to a surface 

integration, where the diffusion and convective terms are 

used as the coefficient of the algebraic equations and any 

other terms treated as a source term. Those the algebraic 

equation arranged in the form [10]:  

𝑎𝑃𝜙𝑃 = ∑ 𝑎𝐹𝜙𝐹

𝐹

+ 𝑆𝜙                                    (9) 

 

𝑦 

𝑥 

4𝐻 

2𝐻 

20𝐻 4𝐻 

𝑢(𝑦) 

Fig.1 The planer expansion. 
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  To solve any conservation equation by using the finite 

volume method first the equations are written in the 

general form: 

∇ ∙ (muϕ) = ∇ ∙ (Γ∇ϕ) + S                      (10) 

 

  Where m  can be the density ρ  or relaxation time λ  ,it 

depend on the type of the conservation equation, ϕ is the 

primitive variable ,S is the source term and Γ is the 

diffusion coefficient. 

3.1 Discretization of momentum equations 

The momentum equations (1) and (2) before the 

discretization they will written in the general form by 

adding a diffusion term for both the sides of the 

momentum equations [11]: 
𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣𝑢) =

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) −

𝜕𝑃

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
−

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)  (11)  

 
𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑦
(𝜌𝑣𝑣) =

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) −

𝜕𝑃

𝜕𝑦
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
−

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) −

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
)  (12)  

 

   The diffusion term was added for the two sides of these 

equations because there is no diffusion in the momentum 

equation, where diffusion is an important term to get the 

stability of finite-volume schemes when integrate the 

momentum equations [11]. 

By arrangement the momentum equations  in the form of 

the general    conservation equation: 
𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣𝑢) =

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) + 𝑆𝑥     (13)  

 
𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑦
(𝜌𝑣𝑣) =

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) + 𝑆𝑦   (14)  

 

Here ; 

Sx = Sx1 + Sx2 + Sx3 + Sx4                         (15)  
 

Sy = Sy1 + Sy2 + Sy3 + Sy4                      (16)  

 

 

 

 

 

Term value term value 

Sx1 
−

∂P

∂x
 

Sy1 
−

∂P

∂y
 

Sx2 ∂τxx

∂x
 

Sy2 ∂τyy

∂y
 

Sx3 ∂τxy

∂y
 

Sy3 ∂τxy

∂x
 

Sx4 
−

∂

∂x
(μ

∂u

∂x
)

−
∂

∂y
(μ

∂u

∂y
) 

Sy4 
−

∂

∂y
(μ

∂v

∂y
)

−
∂

∂x
(μ

∂v

∂x
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before starting the integration of the momentum equation, 

the domain first divided into finite volume as shown in the 

fig.2. 

 

∫ (
𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣𝑢))

𝑉𝑝
𝑑𝑉 = ∫ (

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝑉𝑝

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)) 𝑑𝑉   (17)  

 

As the y-momentum equation integrated in the same way 

so it will mention the integration only for the x-

momentum. 

By using divergence theorem to transfer the volume 

integral to a surface integral for the diffusion and the 

convective while the source term integrated later: 

(𝜌𝑢𝑢𝐴)𝑒 − (𝜌𝑢𝑢𝐴)𝑤 + (𝜌𝑣𝑢𝐴)𝑛 − (𝜌𝑣𝑢𝐴)𝑠 =

(𝜇
𝜕𝑢

𝜕𝑥
𝐴)

𝑒
− (𝜇

𝜕𝑢

𝜕𝑥
𝐴)

𝑤
+ (𝜇

𝜕𝑢

𝜕𝑦
𝐴)

𝑛
− (𝜇

𝜕𝑢

𝜕𝑦
𝐴)

𝑠
+

𝑆𝑥𝑉𝑝          (18)  

 

By using the central difference for the diffusion gradient 

term we get: 

𝐹𝑒𝑢𝑒 − 𝐹𝑤𝑢𝑤 + 𝐹𝑛𝑢𝑛 − 𝐹𝑠𝑢𝑠 =
(𝜇𝐴)𝑒

𝑑𝑥
(𝑢𝐸 − 𝑢𝑃) −

(𝜇𝐴)𝑤

𝑑𝑥
(𝑢𝑃 − 𝑢𝑊) +

(𝜇𝐴)𝑛

𝑑𝑦
(𝑢N − 𝑢𝑃) −

(𝜇𝐴)𝑠

𝑑𝑦
(𝑢𝑃 − 𝑢𝑆) +

𝑆𝑥𝑉𝑝              (19)  

 

  The mass flux is denoted by 𝐹 with the subscribed for the 

specified face and the same thing for the diffusion 

conductance D with the subscribe for the specified face: 

𝐹𝑒𝑢𝑒 − 𝐹𝑤𝑢𝑤 + 𝐹𝑛𝑢𝑛 − 𝐹𝑠𝑢𝑠 = 𝐷𝑒(𝑢𝐸 − 𝑢𝑃) −
𝐷𝑤(𝑢𝑃 − 𝑢W) + 𝐷𝑛(𝑢𝑁 − 𝑢𝑃) − 𝐷𝑠(𝑢𝑃 − 𝑢𝑆) +

𝑆𝑥𝑉𝑝                           (20)  

 

Table.1. The source term parts 

𝑑𝑦 

𝑑𝑥 

Control 

volume 

Control 

volume 

face 

Fig.2. The shape and the distribution of the 

grid for the computational domain. 
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   The power low scheme is used for the convective face 

velocities, those by employing these schemes and after 

arrangement; the fallowing algebraic equation is obtained: 

𝐴𝑃𝜙𝑃 = 𝐴𝑊𝜙𝑊 + 𝐴𝐸𝜙𝐸 + 𝐴𝑁𝜙𝑁 + 𝐴𝑆𝜙𝑆 + 𝑏   (21) 

 

Where the coefficients given in the following table; 

 

 

 

 

 

The value 
The 

coefficient 

𝐷𝑒𝐴(|𝑃𝑒|) + 𝑚𝑎𝑥[−𝐹𝑒 , 0]  𝐴𝐸 

𝐷𝑤𝐴(|𝑃𝑤|) + 𝑚𝑎𝑥[𝐹𝑤, 0]  𝐴𝑊 

𝐷𝑛𝐴(|𝑃𝑛|) + 𝑚𝑎𝑥[−𝐹𝑛, 0]  𝐴𝑁 

𝐷𝑠𝐴(|𝑃𝑠|) + 𝑚𝑎𝑥[𝐹𝑠, 0]  𝐴𝑆 

𝐷𝑒𝐴(|𝑃𝑒|) + 𝑚𝑎𝑥[𝐹𝑒 , 0] + 𝐷𝑤𝐴(|𝑃𝑤|) +
𝑚𝑎𝑥[−𝐹𝑤, 0] + 𝐷𝑛𝐴(|𝑃𝑛|) + 𝑚𝑎𝑥[𝐹𝑛, 0] +

𝐷𝑠𝐴(|𝑃𝑠|) + 𝑚𝑎𝑥[−𝐹𝑠, 0] − 𝑆𝑃𝑉𝑃  

𝐴P 

𝑆𝑥𝑉𝑃 𝑏 

 

 

The flow rates 𝐹𝑒 , 𝐹𝑤, 𝐹𝑛 and 𝐹𝑠  are calculated across the 

face of the control volume, the diffusion coefficient and 

the Peclet number are: 

 

 

 

The Peclet 

number 

The diffusion 

coefficient 

The flow 

rates 

𝑃𝑒 =
𝐹𝑒

𝐷𝑒

 𝐷𝑒 =
𝜇𝐴𝑥

𝛿𝑥
 𝐹𝑒 = (𝜌𝑢𝐴)𝑒  

𝑃𝑤 =
𝐹𝑤

𝐷𝑤

 𝐷𝑤 =
𝜇𝐴𝑥

𝛿𝑥
 𝐹𝑤 = (𝜌𝑢𝐴)𝑤 

𝑃𝑛 =
𝐹𝑛

𝐷𝑛

 𝐷𝑛 =
𝜇𝐴𝑦

𝛿𝑦
 𝐹𝑛 = (𝜌𝑣𝐴)𝑛 

𝑃𝑠 =
𝐹𝑠

𝐷𝑠

 𝐷𝑠 =
𝜇𝐴𝑦

𝛿𝑦
 𝐹𝑠 = (𝜌𝑣𝐴)𝑠 

 

The function  𝐴(|𝑃𝑖|) for power low scheme is [13]:  

𝐴(|𝑃𝑖|) = 𝑚𝑎𝑥[0, (1 − 0.1|𝑃|)5]               (22) 
 

3.2 Discretization of the source term  

The source term for the x-momentum equation is spilt into 

four parts for clearing those: 

𝑆𝑥 = 𝑆𝑥1 + 𝑆𝑥2 + 𝑆𝑥3 + 𝑆𝑥4                         (23) 

 

By integration the terms individually by the using the 

volume integration around the cell P  

1- Sx1 

 

Sx1 = −
∂P

∂x
⇒ ∫ Sx1VP

dV = − ∫
∂P

∂xVP
dV =

Pe−Pw

dx
VP       (24)  

 

2- Sx2 

Sx2 =
∂τxx

∂x
⟹ ∫ Sx2VP

dV =
τxxe−τxxw

dx
VP                     (25)  

 

3- Sx3 

Sx3 =
∂τxy

∂y
⇒ ∫ Sx3

VP

dV =
τxyn − τxys

dy
VP                   (26) 

 

4- Sx4  
 

This term is the same for the diffusion in the 

algebraic equation so just added it to the source 

term: 

𝑆𝑥4 = −(𝐷𝑒(𝑢𝐸 − 𝑢𝑃) − 𝐷𝑤(𝑢𝑃 − 𝑢𝑊) + 𝐷𝑛(𝑢𝑁 − 𝑢𝑃)
− 𝐷𝑠(𝑢𝑃 − 𝑢𝑆))        (27) 

3.3 Discretization of the constitutive equations 

  The constitutive equations contain convective terms only 

for the primitive variable, so the divergence theorem 

integration will applied only for these parts. The up-wind 

scheme is used for the convective terms after integration is 

done.  

Because of the similarity in the discretization of the three 

constitutive equations, the integration steps will mention 

her only for the X-axis equation. 

Normal stressτxx: 
𝜕

𝜕𝑥
(𝜆𝑢𝜏𝑥𝑥) +

𝜕

𝜕𝑦
(𝜆𝑣𝜏𝑥𝑥) = 2𝜇

𝜕𝑢

𝜕𝑥
− 𝜏𝑥𝑥 + 2𝜆

𝜕𝑢

𝜕𝑥
𝜏𝑥𝑥  +

2𝜆
𝜕𝑢

𝜕𝑦
𝜏𝑥𝑦      (28)  

 

 

By integration this equation by using divergence theorem 

for the convective terms: 

 

(𝜆𝑢𝜏𝑥𝑥𝐴)𝑒 − (𝜆𝑢𝜏𝑥𝑥𝐴)𝑤 + (𝜆𝑣𝜏𝑥𝑥𝐴)𝑛 − (𝜆𝑣𝜏𝑥𝑥𝐴)𝑠 =

2𝜇 (
𝑢𝑒−𝑢𝑤

𝑑𝑥
) 𝑉𝑃 − 𝜏𝑥𝑥𝑃𝑉𝑃 + 2𝜆 (

𝑢𝑒−𝑢𝑤

𝑑𝑥
) 𝜏𝑥𝑥𝑃𝑉𝑃 +

2𝜆 (
𝑢𝑛−𝑢𝑠

𝑑𝑦
) 𝜏𝑥𝑦𝑃𝑉𝑃           (29)  

 

After arrangement this equation and using the up-wind 

scheme for the convective: 

APτxxP = ∑ AFτxxF

F

+ S1       (30) 

 

 

Table.2. the coefficient of the discretization algebraic 

equation 

Table.3. the mass flux, diffusion conductance and the 

Peclet number  
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Where the summation is done over the four neighbor of 

the nodal point P. the different terms are as follows: 

𝐴𝑃 = 𝑚𝑎𝑥(−𝐹𝑤 , 0) + 𝑚𝑎𝑥(𝐹𝑒 , 0) + 𝑚𝑎𝑥(𝐹𝑛 , 0) +
𝑚𝑎𝑥(−𝐹𝑠 , 0) + 𝑉𝑃       (31)  

  

𝐴𝑊 = 𝑚𝑎𝑥(𝐹𝑤 , 0) , 𝐴𝐸 = 𝑚𝑎𝑥(−𝐹𝑒 , 0), 𝐴𝑁 =
𝑚𝑎𝑥(𝐹𝑛 , 0) , 𝐴𝑆 = 𝑚𝑎𝑥(−𝐹𝑠 , 0)         (32)  

  

𝑆1 = 2𝜇 (
𝑢𝑒−𝑢𝑤

𝑑𝑥
) 𝑉𝑃 + 2𝜆 (

𝑢𝑒−𝑢𝑤

𝑑𝑥
) 𝜏𝑥𝑥𝑃𝑉𝑃 +

2𝜆 (
𝑢𝑛−𝑢𝑠

𝑑𝑦
) 𝜏𝑥𝑦𝑃𝑉𝑃                                                                  (33)  

3.4 Collected grid  

  the check board pressure problem is prevented in the 

collected grid, by using the spatial interpolation of Rhie-

Chow [10]. Which is used to calculate the face velocity 

that used in the mass fluxes and the pressure correction 

equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑢𝑓 = 𝑢𝑓 − 𝐵𝑓
𝑢 + 𝐷𝑓

𝑢 (
𝜕𝑝

𝜕𝑥
)

𝑓
+ 𝐵𝑓

𝑢 − 𝐷𝑓
𝑢 (

𝜕𝑝

𝜕𝑥
)

𝑓
          (45) 

𝑢𝑓 = 𝑢𝑓 − 𝐷𝑓
𝑢 ((

𝜕𝑝

𝜕𝑥
)

𝑓
− (

𝜕𝑝

𝜕𝑥
)

𝑓
)       (46) 

 

 

This velocity used to calculate the mass flux in the 

momentum equation and in the pressure correction 

equation. 

3.5. Solution algorithm 

     The solution of the algebraic equations for the 

momentum and the constitutive equations follows the 

correction procedure and the pressure correction equation 

which used to find the pressure field. This procedure first 

time used by Patankar to solve the momentum equations 

and to fiend the flow field variables. The algorithm for 

Patankar called the semi-implicit method for the pressure-

linked equation (SIMPLE). Also there are other algorithms 

considered as a modification for the original one 

(SIMPLE), such as SIMPLE revised (SIMPLER) [7] and 

the SIMPLE consistent (SIMPLEC) algorithm. 

     In this simulation the SIMPLE algorithm is used. By 

making the required modification of the original algorithm 

to handle the viscoelasticity. This modification is past on 

the discretization of the momentum equation and the 

constitutive equation as it is explained earlier. 

The algorithm flow is as below: 

1- Assume initial value for all the variable  

2- Solve the momentum equations to obtain the 

velocity field  

3- Solve the correction equation  

4- Correct the pressure and velocities  

5- Solve the constitutive equations to obtain the 

stresses 

6- Check converges, if converged stop, else go to 

point 1 and set the current value of variable as 

initial value. 

 

Thus the solution of the allegoric equations obtain by 

using the TDMA(Tri-Diagonal Matrix Algorithm) which 

is used for the matrixes of Diagonal coefficient type or the 

matrixes which is all zeros just the diagonal that known to 

come from the discretization by the FVM . 

4. Results and discussion 

  The results were obtiand by a code written in Fortran 

programing language in the unvirsety of Thi-Qar in 

Enginering college –Mechanical department by the auther. 

The code was adabtude to handle the viscoelastisty 

according to the soltion alogarthim. 

   The numerical simlution taken by [9] is repeated using 

the same differential constitutive equation. The problem is 

shown in fig.(1). The flow considered through sudden 

expansion with an expansion ratio 1:4. In this simulation 

the dimensionless Deborah number (De) was used to 

control the viscoelasticity of the fluid and it is changed in 

a range of values (0, 0.5, 1, and 1.5). As done by [9] Re 

Reynolds number was constant in all the simulations and it 

was equal to 0.1. 

The grid density used for the calculation shown in 

table.4for three different mesh setting.  

 

 

 

 

Mesh 
No. of CV.in x-

direction 

No. of CV.in y-

direction 

M1 51 80 

M2 81 100 

M3 81 180 

Table.4. the mesh density used in the simulation. 

𝑊 𝐸 

𝑆 

𝑁 

𝑛 

𝑒 𝑤 

𝑠 

𝑃 

Fig.3. The face velocity position in the control 

volume [10]. 
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(a) Contour for the axial velocity  
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(b) Contour for pressure 
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(a) Contour for the axial velocity  

(c) Contour for the normal stress 

𝜏𝑥𝑥  

x/H

y
/H

0

0

5

5

10

10

15

15

1

2

3

4

5

6

7

8



x/H

y
/H

0

0

5

5

10

10

15

15

20

20

0 0

2 2

4 4

6 6

8 8



(b) Contour for pressure 

(d) Contour for the normal stress 𝜏𝑦𝑦 
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(e) Contour for the shear stress 
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The first simulation is done for the Newtonian case when 

De=0. In this case the circulation zone used to compare 

with another cases when a large Deborah numbers are 

used. 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the figures below the results are obtained for the case of 

De=0.75. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. The contours for the primitive variable (a) axial 

velocity contour (b) pressure contour (c) 𝜏𝑥𝑥 contour 

(d) 𝜏𝑦𝑦 contour (e) 𝜏𝑥𝑦 contour , for De=0, Re=0.1. 
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(c) Contour for the normal stress 𝜏𝑥𝑥  
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(d) Contour for the normal stress 𝜏𝑦𝑦 
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(e) Contour for the shear stress 𝜏𝑥𝑦 
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(b) Contour for pressure   
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(d) Contour for normal stress 𝜏𝑦𝑦 
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(a) Contour for the axial velocity 
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(c) Contour for normal stress 𝜏𝑥𝑥 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed that as Deborah number increased the 

computational domain length also need to increase. Those 

Fig.5. the contours for the primitive variable (a) 

axial velocity contour (b) pressure contour (c) 𝜏𝑥𝑥 

contour (d) 𝜏𝑦𝑦 contour (e) 𝜏𝑥𝑦 contour , for 

De=0.75, Re=0.1. 
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(e) Contour for shear stress 𝜏𝑥𝑦 

Fig.6. the contours for the primitive variable (a) axial 

velocity contour (b) pressure contour (c) 𝜏𝑥𝑥 contour 

(d) 𝜏𝑦𝑦 contour (e) 𝜏𝑥𝑦 contour , for De=1.5, Re=0.1. 
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the first simulation is for the Newtonian case when De=0 

the computational domain was have a length of 20H and 

this length was good for the stability of the numerical 

method but. If Deborah numbers became higher than 0.75 

the length of 20H was not good for the stability of the 

numerical method and in the case of De=1.5 the length of 

30H was good for stability of the solution so the result was 

obtain for this length . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig.5. shows the contours for the (a) axial velocity 

contour (b) pressure contour (c) 𝜏𝑥𝑥  contour (d) 𝜏𝑦𝑦 

contour (e) 𝜏𝑥𝑦  contour , at De=0.75, Re=0.1. It is clear 

from the figure that the recirculation zones are smaller 

than that at Fig.4 in the Newtonian case. Also the 

difference can be seen for the pressure contour and the 

stresses cotours . 

 

   In Fig.6 it can be seen that the effect of Deborah 

number on the circulation zones is to reduce their size. 

They are nearly eliminated from the contour, this 

happened because the increasing of the elasticity levels 

(when De number increase) making the fluid moves 

adjacent to the wall of the pipe. In the Newtonian case 

when entering a channel with a larger height, the stresses 

will relaxed along the streamlines. But For the viscoelastic 

fluids this will causes expansion in the transverse flow 

direction. 

  

  In the same way from fig.8 and fig.7 it is observed that 

the pressure drop and the pressure required to push the 

fluid inside the channel both were increased and this 

happened because of the high level of elasticity making 

the fluid giving more resistance for deformation and 

movement. 

  Fig.7 shows the normal stress τxx at the center line of the 

channel. It shows that this stress was increased when De 

number increase, where at De=0 having small value at the 

expansion or at the entrance to the channel while at 

De=1.5 the difference clearly appear. The same reason 

here because of the high elasticity levels making the fluid 

give more resistance to deform not like the Newtonian 

fluid where the deformation is easily happened. 

 

5. Concluding remarks 

   Using FVM for the numerical simulation in general offer 

a simple implementation and has the power and the ability 

to deal with complex partial differential equations .In this 

work that done for the UCM viscoelastic fluid flow in a 

1:4 expansion duct were a stabile solution is obtained up 

to Deborah number equal to 1.5 and the flow was 

considered to be creeping flow at Reynolds number 0.1. 

The results shows that the increasing of the viscoelasticity 

levels leads to reducing the recirculation zones that 

generated at the corner of the expansion also the pressure 

drop was increased when the elasticity level increased. 
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