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Abstract: 

 

In this study, the dynamic analysis of non-prismatic simply-supported Euler-Bernoulli 

beam subjected to non-concentric compressive axial force has been presented. Kinetic and 

potential energy expressions of the model are derived. Hamilton‘s principle is used to obtain 

the governing equations of motion. The fourth order differential equation with variable 

coefficient of the beam dynamics and buckling is solved using Differential Transform Method 

(DTM) to obtain mode shape, natural frequencies and buckling load of the system. The 

computer package Mathematical is used to write a program to calculate the natural 

frequencies, buckling load and the mode shapes. The effects of the taper ratio, eccentricity, 

and bucking load are investigated. The results are compared with the results of the analytical 

solution where a very good agreement is observed. The results show that the natural 

frequencies of prismatic and non-prismatic beam decreased when the compressive axial force 

increased. Also, the results show that when the taper ratio and eccentricity increased, the 

natural frequency of non-prismatic increases. The buckling load factor decreases when the 

taper ratio increases.  

 

Keywords:  Non-prismatic Euler-Bernoulli Beam, Non-concentric force, Hamilton’s   
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 انخحهيم انذيُاييكي نعارضت غير يُخظًت انًقطع يعرضت لاحًال ضغط  لا يحىريت

 باسخخذاو طريقت انُقم انخفاضهي

 

 انخلاصت

 غ١ش ِٕزظّخ اٌّمطغ ِغٕذح إعٕبد ثغ١ؾ  (Euler-Bernoulli)ُ ػشع اٌزؾ١ًٍ اٌذ٠ٕب١ِىٟ ٌؼبسػخفٟ ٘زا اٌجؾش ر   

ِؼشػخ لأؽّبي ػغؾ لا ِؾٛس٠خ. رُ اشزمبق ِؼبدلاد اٌطبلبد اٌؾشو١خ ٚاٌىبِٕخ ٌٍّٕٛرط. ٚلذ اعزخذَ ِجذأ ٘بٍِزْٛ 

ِٓ ِؼبدٌخ رفبػ١ٍخ ٌٍؾظٛي ػٍٝ اٌّؼبدلاد اٌزٟ رؾىُ اٌؾشوخ. ِؼبدٌخ اٌؾشوخ اٌذ٠ٕب١ِى١خ ِٚؼبدٌخ الأجؼبط ٌٍؼبسػخ ٟ٘ 

لإ٠غبد اٌزشدداد اٌطج١ؼ١خ, أشىبي  (DTM)بعزخذاَ ؽش٠مخ إٌمً اٌزفبػٍٟ اٌذسعخ اٌشاثؼخ ٚثّؼبِلاد ِزغ١شح رُ ؽٍٙب ث
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اعزخذَ ٌىزبثخ ثشٔبِظ ٌؾغبة وً ِٓ اٌزشدداد اٌطج١ؼ١خ, ؽًّ   Mathematicalإٌغك, ؽًّ الأجؼبط ٌٍّٕظِٛخ. ثشٔبِظ 

ٌٕزبئظ لٛسٔذ ِغ ٔزبئظ اٌزؾ١ًٍ الأجؼبط ثبلإػبفخ إٌٝ أشىبي  إٌغك. رأص١ش وً ِٓ الأؾشاف, اٌلاِشوض٠خ رُ رخ١ّٕٙب. ا

إٌظشٞ اٌّزٛفشح ٠ٚلاؽع رٛافمب ع١ذا عذا. إٌزبئظ ث١ٕذ ثبْ اٌزشدداد اٌطج١ؼ١خ رمً ثض٠بدح أؽّبي الأؼغبؽ ٌٍؼبسػخ راد 

 اٌّمطغ إٌّزظُ ٚغ١ش إٌّزظُ  ٚوزٌه ث١ٕذ إٌزبئظ ثبْ اٌزشدداد اٌطج١ؼ١خ  رمً ثض٠بدح ٔغجخ الأؾشاف ٚ اٌلاِشوض٠خ

   .   سػخ غ١ش ِٕزظّخ اٌّمطغ . ِؼبًِ ؽًّ الأجؼبط ٠مً ثض٠بدح ٔغجخ الأؾشافٌٍؼب

 

غير يُخظًت انًقطع , قىة  لا يحىريت , يبذأ هايهخىٌ , طريقت انُقم   (Euler-Bernoulli): عارضت كهًاث يرشذة

 .انخفاضهي

 

1.  Introduction 

 

Non-prismatic beam are increasingly being used in structures for economic, aesthetic, and 

other consideration. Design of such structures to resist dynamic forces such as wind and 

earthquakes, requires knowledge of their natural frequencies and the mode shapes of 

vibration. The Non-prismatic beam has received great attention from engineers due to their 

capability in optimizing the strength and weight of the structure. 

The vibration problems of non-prismatic beam can be solved by analytic or approximate 

approaches. The analysis of non-uniform beam vibration using a green function method in the 

Laplace transformation domain have been investigated by Lee and. Ke [1]. Free vibration of 

tapered beam with flexible ends using Bessel‘s‘ function have been studied by Auciello[2].  

Naquleswaran [3] obtained a direct solution for the transverse vibration of Euler-Bernoulli 

wedge and cone beam. Vibration problems of non-uniform rods and beams using the 

Rayleigh-Ritz scheme was solved by Abrate.[4]. Rutta P. [5] applied Chebychev series to 

solve vibration problem for a non-prismatic beam resting on a two parameter non-

homogenous elastic foundation. Buckling analysis of non-prismatic columns by using 

modified vibrational mode shape and energy method was presented by Rahai and Kazemi [6]. 

Free vibration of non-prismatic beam by the displacement based formulation (stiffness 

method) was presented by Reza Attarnejad [7]. 

The complexity in analysis of non-prismatic beam lies in the presence of variable 

coefficient in the governing differential equation introduced by variable cross-section area and 

second moment of area. Due to presence of these variables coefficient , exact solutions are 

generally unavailable except for some special cases, many references mentioned that such as 

[8,9,10], therefore, a semi-analytical technique based on the Taylor series expansion method 

which called differential transformation method is using to solve the differential equation. 
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DTM was applied to solve linear and non-linear initial value problems and partial 

differential equations by many researches. The concept of DTM was first introduced by 

Zhou [11] and he used DTM to solve both linear and non-linear initial value problems in 

electric circuit analysis. Bert and Zeng [12] used DTM to investigate the analysis of axial 

vibration of compound bars. Numerical solution to buckling analysis of Bernoulli–Euler 

beams and columns were obtained using DTM and harmonic differential quadrature for 

various support conditions considering the variation of flexural rigidity by Rajasekaran [13]. 

The application of techniques of differential transformation method (DTM) to analyze the 

transverse vibration of a uniform Euler-Bernoulli beam under varying axial force was 

presented by Young-Jae and Jong-Hak .[14]. The analysis of axially vibrating variable cross-

section isotropic rod by using differential transformation method was studied by Mohammed 

Rafree and Amir Moradi [15]. Transverse vibration of conical Euler-Bernoulli beam using 

differential transformation method was presented by Torabi et al. [16]. 

In the present work, the model suggested in Ref. [5] is extended to include the effect of 

non-concentric compressive axial force on the vibration of non-prismatic beams. The 

eccentric compressive force can be resolved into a force and a couple moments at the center 

of the cross section of the beam. The Differential Transform Method (DTM) was used to 

solve the fourth order differential equation with variable coefficient of the beam vibration and 

buckling to obtain mode shape, natural frequencies and buckling load of the system. Also, the 

effect of this force and the effect of eccentricity on fundamental frequency of the non-

prismatic beam are conducted. 

 

2. Differential Transform Method 
 

The differential transform method is a semi-analytic transformation technique based on the 

Taylor series expansion and is a useful tool to obtain analytical solutions of the differential 

equations. In this method certain transformation rules are applied to both the governing 

differential equations of motion and the boundary conditions of the system in order to 

transform them into a set of algebraic equations. The solution of these algebraic equations 

gives the desired results of the problem. It is different from high-order Taylor series method 

because Taylor series method requires symbolic computation of the necessary derivatives of 

the data functions and is expensive for large orders. The basic definitions and the application 

procedure of this method can be introduced as follows;  
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Consider a function y(x) which is analytic in a domain D and let x = x    represent any point in 

D Then, the function  xy  can be represented by a power series whose center is located at 0x  

and the differential transform of the function  xy  is given by 

 
0
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where  xy  is the original function and  kY  is the transformed function, which is called T-

function. The inverse transformation of  kY is defined as 
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Considering )(xf  by a series of finite terms, Eq. 3 is arranged as follows, with assuming the 

residual terms to be negligibly small. The increase of convergence is determined by the value 
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Table 1 shows lists of the transformation properties that are useful in the analysis that follows. 

 

Table 1. DTM theorems used for equations of motion [17] 
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3.  Mathematical model and formulation: 

 

For a non-prismatic Euler-Bernoulli simply supported beam under non-concentric 

compressive axial force, the governing differential equations of motion is derived by applying 

Hamilton‘s principle. Figure (1) shows a schematic representation of the problem under 

consideration. 

The potential or strain energy U of the beam due to bending and axial compressive force is 

given by; 

 

            dxyNdxyxEIU
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  The kinetic energy T of the beam is given by; 
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Hamilton‘s principle, which is expressed as follows, is applied to the energy expressions 

given above in order to obtain the governing equations of motion and the boundary conditions 
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Where t1 and t2 are the time intervals in the dynamic trajectory, and  is the usual variation 

operator. 

Substituting for T and U from Eqs. (5 ) and (6 ) into Eq.(7 ), using the   operator, integrating 

each term by parts, and collecting terms gives the following governing differential equation in 

free vibration for the non-prismatic beam under non-concentric axial force. 
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The  boundary conditions for simply  supported beam whose length is L are given as: 
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Fig. 1. A schematic diagram 

 

For free vibration analysis of the own problem, let us assume the solution is in the form of 

sinusoidal variation of ),( txYy   with circular frequency  : 
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Substituting equation (10) into Eqs. (8), and (9), equation of motion and boundary conditions 

are expressed as follows: 
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Introduce the following non-dimensional quantities: 
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The governing differential equation and boundary conditions can be rewritten in the following 

non-dimensional form: 
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4. Application of DTM 

 

4.1 Free vibration problem of non-prismatic beam 
 

 From the definition and properties of DT transformation given in table 1, the DT of the 

equation of motion (14) after defining 2   is found as [17],    
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Where )(),(),( kYandkQkB are the T-function of )(b , )(q  and )(y  respectively.  

Additionally, the differential transform method is applied to Eqs (15a)-(15b) and the 

following transformed boundary conditions are obtained. 
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The boundary conditions given by Eqs (17a ), (17b) and the missing boundary conditions that 

are assumed to be sY )1( , zY )3(  where s and z are constants, are substituted into Eq. 

(16). Therefore, the following expression is obtained 
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By Eq. (18), we have the frequency equations as follows.   
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Solving equation (19), we get 
)(n

j   where nj ,..3,2,1 . Here, 
)(n

j  is the thj  estimated 

eigenvalues corresponding to n . The value of n  is obtained by the following equation: 
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where   is the tolerance parameter. If equation (20) is satisfied, then we have thj  eigenvalues

)(n

j .  

In general, 
)(n

j are conjugated complex values, and can be written as jj

n

j iba )( . 

Neglecting the small imaginary part jb , we have the thj  natural frequency. 

 

4.2 Buckling problem of non-prismatic beam 
 

When the natural frequency of the system vanishes under the axial loading, the system 

begins to buckle. By introduction 02   into Eq. (16), one gets the relation    
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By applying the DTM to Eq. (22), and using the transformation operation and after some 

simplifications, the following recurrence equation can be obtained     
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 The differential transformation boundary conditions are the same as that of equations (17a), 

and (17b) for simply-supported beam. 

By assuming 1)1( cY   and 2)3( cY  , then Eq. (22) can be calculated up to n terms, and it 

will 

be substituted in Eq. (17), and solving  these two equations for non-trivial solutions we get 

)(n

crcr NN  . Here 
)(n

crN is the estimated buckling load value corresponding to n. The value of n 

is obtained by the following equation: 

 

            )1()( n

cr

n

cr NN                                                                                                         (23) 

 

Where  is the tolerance parameter and four decimal accuracy considered in the present 

analysis. 

 

5.  Results and discussion 

 

5.1 Free Vibration: 

 

Consider a prismatic  beam with modulus of elasticity  E = 200 G Pa, beam length  

L= 3m, rectangular cross-sectional area with 0.1 m height and 0.08 width, subjected to a 

concentric and non-concentric compressive axial force with different values. The natural 

frequencies of the beam under concentric force are determined according to Eq. (19), and 

compared with those of Singiresu S. Rao [18] as tabulated in Table (1). It is seen that the 

present values show a good agreement with those of Singiresu S. Rao [18]. The dimensionless 

natural frequency λ corresponding to various dimensionless compressive forces rN  are shown 

in Fig. (2), where EINlNr

22 / . As the compressive axial force increased, the natural 

frequencies of all modes decreased, at a certain compressive force, the critical buckling load, 

the lowest natural frequency drops to zero and the beams elastically become unstable. 
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Table 1: natural frequencies of the present study and the exact result Comparison 

 

Axial force 

(kN.) 

1  

Rad/s 

2  

rad/s 

3  

rad/s 

4  

rad/s 

N = 0 160.3046 641.2173 1442.7434 2564.8719 

N= 500 130.0443 613.1987 1415.0751 2537.3112 

N= 1000 90.1298 583.8353 1386.8454 2509.4612 

N= 1000 

Ref.(18 ) 

90.1293 583.8313 1386.8320 2509.4392 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.( 2) Dimensionless natural frequency 2

1

4 )/( EIAl  versus dimensionless 

compressive force EINlNr

22 / . 

 

 

The first three mode shapes for prismatic Euler-Bernoulli simply supported beam without and 

with compressive axial force are shown in Figs. (3) and (4). 
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Fig.(3) The first three mode shapes of simply-simply supported beam without 

compressive axial  force 

 

 

      

 

 

 

 
 

 

 

 

Fig.(4) The first three mode shapes of simply-simply supported beam with compressive   

axial  force  (N = 1x10
3
 KN) 

 

On the other hand, when the beam is subjected to non-concentric compressive axial force with 

eccentricity (e), the dimensionless natural frequencies are obtained by using (DTM) for 

different values of axial compressive force and eccentricities. Figure (5), shows the effect of 

eccentricity on the natural frequencies of prismatic beam. In this figure, it is seen that the 

critical concentric axial compressive force is higher compared to that for beam subjected to 

non- concentric force due to the moment which results from the eccentricity of this force. 
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Fig.(5) Variation of dimensionless natural frequency with the dimensionless  

Compressive axial force 

 

 Now, consider a non-prismatic beam with simply-supported boundary conditions is subjected 

to a concentric and non-concentric compressive axial force. The dimensionless natural 

frequencies for taper ratio (α = 0, 0.5) for different values of compressive axial force are 

obtain as tabulated in Table (2). It can be seen that, the natural frequencies decreases when the 

compressive force increases.  

 

Table (2), Non-dimensional natural frequency of simply supported non-prismatic beam    

with different non-dimensional axial compressive force 

 

Nr 
α=0 α=0.5 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

Nr=0 9.8696 39.4784 88.826 8.081 32.2264 72.7259 

Nr=0.25 8.5473 34.1893 76.9259 5.7353 22.9225 51.5734 

Nr=0.345 7.9876 31.9507 71.8891 4.5264 18.1045 40.7343 

Nr=0.5 6.9788 27.9154 62.8097 0.5983 2.3923 5.3824 

 

 

 

D
im

en
si

o
n

le
ss

 N
at

u
ra

l F
re

q
u

en
cy

 

(λ
) 

 

e 
N o n 

  C o n c e n t r i c 
  f o r c e

  

0 . 0 0 . 1 0 . 2 0
 

. 3
 

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 

  
9 1 . 0 1 . 1 

                                 

  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0 
C o n c e n t r i c 

  f o r c 

Dimensionless Compressive Force 

(Nr) 



 

91 
 

Thi-Qar University Journal for Engineering Sciences, Vol. 4, No. 2 2013 

 

5.2 Buckling load 

A non-prismatic beam with different second moment of area and different tapered ratio 

under concentrated compressive force are studied. As a case study, the non-prismatic beam with 

constant is of and linearly varying height, I(ξ) = (1-αξ)
3
. The critical buckling load (Nr) using 

differential transform methods are calculated and they are listed in Table (3). These results agree 

very well with these by using finite element method (FEM).  

 

Table (3). Critical buckling  load ( Nr ) for tapered beam with  I(ξ) = (1-αξ)
3 

 

α Nr  (DTM) FEM Discrepancy % 

0 9.870 9.870 0.000 

0.2 7.081 7.091 0. 014 

0.4 4.685 4.691 0. 012 

0.6 2.672 2.674 0. 007 

0.8 1.082 1.091 0. 083 

 

Second case study, the non-prismatic beam with constant height and linearly varying width, 

which means (I(ξ) = (1-αξ)). The results are also evaluated under the simply-supported boundary 

conditions and compressive axial force. The variation of the critical buckling load with the taper 

ratio for simply-supported boundary condition and different second moment of area (I) is plotted 

in Fig.(6) which illustrates the decreasing of the critical load as the taper ratio increased. By 

comparison of these two curves in Fig.(6), we can see that the critical buckling loads of the 

second case study are greater  than the corresponding values of first for the same taper ratio. This 

implies that the beam with constant height and linearly varying width has a stronger than that 

with constant width and linearly varying height. In other words, beam under compressive axial 

force is easy to buckle towards the linearly varying height direction, rather than linearly varying 

width direction. Such conclusion is easily understood since the bending stiffness of (I(ξ) = (1-

αξ)
3
) is less than     (I(ξ) = (1-αξ)).  
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Fig.(6)  Variation critical buckling force ( rN ) with the taper ratio (α)  (ـــــــ (I(ξ) = (1-αξ)), 

(.... I(ξ) = (1-αξ)
3
) 

 

6. Conclusions 

The main conclusions of the present work can be summarized as: 

1- The application of DTM to both the governing equations of motion, buckling, and the    

boundary conditions are very easy. Moreover, DTM produces simple algebraic equations 

that can be solved very quickly using the symbolic computational software, 

Mathematical. 

2- The calculated results using differential transformation method (DTM) give good 

agreement when compared with reference values. 

3- The natural frequencies of prismatic and non-prismatic beam decrease when the 

compressive axial force increases. 

4- The result show that when the taper ratio and eccentricity increases, the natural 

frequency of non-prismatic decreases. 

5- The buckling load factor decreases when the taper ratio of non-prismatic beam 

increases. 

6- Beam under compressive axial force is easy to buckle towards the linearly varying height 

direction, rather than linearly varying width direction. 
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Nomenclature 

 

A(x)                      Cross-sectional area at the position x, (m
2
) 

Ao                         Cross-sectional area at x=0,  (m
2
) 

E                           Young‘s modulus (N/m
2
) 

e                             Eccentricity  (m) 

I(x)                        Moment of inertia at distance at x , (m
4
) 

 Io                           Moment of inertia at x=0 ,  (m
4
) 

I(l)                         Moment of inertia at distance at x=l,  (m
4
) 

L                           Beam length, (m)      

M                          Bending moment (N.m)    

 N                          Non-concentric compressive axial force, (N) 

Nr                                        Nondimensionalized compressive force 

  U                          Potential Energy   (Joule)                  

  T                           Kinetic Energy   (Joule) 

  t                           Time, (second) 

 y(x, t)                   Transverse deflection, (m) 

x                             Longitudinal coordinate 

                           Mass density of the beam material (kg/m
3
) 

μ                    Non-dimensional natural frequency 

                          Taper ratio 

                            Circular natural frequency (rad/s) 

i                           1  

 

 

 

 

 

 

 

 

 

 

 


