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Abstract

The aim of this work is to calculate the flow discharge in horizontal elliptic channels
with free overfall at the end of the channel. Two methods are used, the first one is Boussinesq
approximation to calculate the End- Depth — Ratio ( EDR ) .The second one is a theoretical
procedure applied to compute the flow over a sharp — crested weir.The available experimental
data are used to verify the proposed End — Depth — Discharge (EDD) relationship. The
calculated discharges, using the proposed EDD relationship, show excellent agreement with
the experimental values in subcritical flows. However, the agreement is not so good in
supercritical.
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1. Introduction

A free overfall occurs when the flow detaches from the solid boundary to form a free
nappe owing to an abrupt decrease in channel bed elevation (that is a drop structure)[1]. It
offers a method of discharge measurement in open channels from a single measurement of the
depth at the brink known as end depth . The value of the end depth depends on the shape of
the approach channel. If the slope of the channel is negative, zero or mild, the flow at
upstream of the fall will be critical. However, if the upstream channel is steep, the flow will
be supercritical and normal depth occurs upstream of the brink[2].

The measurement of flow discharge in open channels is useful especially in channels
having covers (sewer, duct, tunnel etc.) . Rouse [3], being the first to investigate the end-depth
experimentally, proposed a relationship termed End-Depth Ratio (EDR = end-depth/critical-
depth), which was found to be 0.715 in mildly sloping rectangular channels.Diskin [4] applied
a momentum equation between apparent and end sections and obtained an expression for end-
depth ratio (EDR), i.e., ratio of end depth to critical depth, YC. Rgjaratnam and Muralidhar [5]
introduced a pressure coefficient in the momentum equation and calculated EDR = 0.667,
0.731 and 0.775 for subcritical flows in rectangular, parabolic and triangular channels,
respectively. Dey [6] extended the use of the momentum equation to calculate EDR for others
shapes of channels. The generalized energy method gives EDR = 0.694, 0.734 and 0.762 for
subcritical flows in rectangular, parabolic and triangular channels, respectively. Anastasiadou-
Partheniou and Hatzigiannakis [ 7], Ferro [8] and Ahmad [2] simulated the free overfall with a
sharp crested weir of zero height. Marchi [9] solved the two dimensional free overfall using

cnoidal wave theory.

Dey [10] presented a theoretical and experimental study on free overfall in an inverted
semicircular channel. He applied the momentum equation between the apparent section and
the end section and found that EDR = 0.705 for subcritical flows up to the ratio of critical
depth, and diameter 0.42. However, in the supercritical flow, the EDR decreases with increase
in relative bed dope (ratio of critical bed dope, &, to bed dope, ). He aso found that
computed discharges obtained through application of a momentum equation in supercritical
flows are not comparable with the experimental ones. The reason for the disagreement is due

to neglecting the stream-wise component of the gravity force in the momentum equation.
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In this paper, two separate methods are presented to analyze the free overfall in elliptic
channels, as shown in Figure (1)(a, b and ¢). First, an analytical model for a free overfall from
smooth elliptic channels is presented, applying a momentum approach based on the
Boussinesq assumption. Secondly, an alternate approach for a free overfall from elliptic
channels is also presented. The model yields the end-depth ratio and end depth— discharge
relationship, which are verified using the experimental data of previous studies.
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Figure (1). (a) Schematic view of atypical free overfall.
(b) Streamline pattern of a free overfall.

(c) Cross—section of an elliptic channel.

2. Problem For mulation

2.1. Boussinesg approximation

The free surface curvature of a free overfall being relatively small varies from a finite
value at the free surface to zero at the channel bed as shown in Figure (1). According to the
Boussinesq approximation [11], a linear variation of the streamline curvature with depth y is

assumed. Hence, the radius of curvaturer of astreamline at y is expressed by:

Ur=(y/h)(1/ry ()
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Where
h =flow depth, and rs=radius of curvature of the free surface. For the small free surface
curvature, it can be approximated by:

1rs= d’h/dx® )
Where:
X = streamwise distance. The normal acceleration ay based on the aforementioned assumption
isgiven by:
ay=ky ©)
Where:
V2d?h
K= h dx? )

Where V = mean flow velocity. Integrating the Euler equation (see Subramanya [12]), the
effective hydrostatic pressure head he, is expressed by

hep =h+-—— (5)

Where g =gravitational constant. Eq. (5) obtained by Boussinesq [11] is applicable in solving
problems with small curvature at the free surface, namely free overfall.

The flow velocity at the end section is calculated by applying the Bernoulli equation
on a streamline between the upstream section at x =- L and the end section at x = 0. The
discharge Q is computed using the following equation:

ho
Q =Cd\2g j t(H—y)dy (6)
0

Where  Cd = coefficient of discharge ( = Cv Cc), Cv= coefficient of velocity, Cc =
coefficient of contraction, t =channel width at an elevationy, and H = total head. The total
head H at the upstream section (x = -L) is given by

2

V.
H:h0+i @)
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2.2. End-depth—-discharge relationship
The free overfall is a special case of a sharp-crested weir, at the end of the channel and
of zero height. The theoretical procedure applied to compute the discharge over a weir can
also be applied to a free overfall to get the EDD relationship [8]. The flow velocity at any
depth at free overfall is calculated by applying the energy equation between any two points
located at sections 00 and e-e (see Figure (1).(a)). It is assumed that all the streamlines at the
brink are parallel to each other, i.e., the emerging jet is undeflected. To account for the
curvature of streamlines, i.e., the deflection of the jet due to gravity, a coefficient of
contraction is considered. Zero pressure at the brink is assumed. The discharge through an
elemental strip of thickness dyat a height y above the bed is given by:
dQ=2g({H -y} **T dy (8)

2
Where g = acceleration dueto gravity; H=Y, + Z—; , T =top width, given by the

following relationship:
T = (D 4y,)"? 9)
Where D = diameter of the channel. Substituting Eq. (9) into Eq. (8), the total discharge is

given by
_ Y1 (H-y1) Ya\1/2
Q=Cey2gf, 5 (1-7D™dy (10)
Where Cc= coefficient of contraction. Rearranging Eq. (10), one can get
V.
Fl = — (11)
JV29A /T,

DZ

DZ
= §®1(X1) (12)
T,=D ’(1 - 4X12) = D@z(X1) (13)
Where:
_h
X = D (14)
H=v |1+ Fy Ay 15
=V VLT, (15)
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Substitution of Egs. (12) and (13) into Eq. (15) yields

F? 9,(X,)

H
=X |1+ -
! 16X1 Q)Z (X)Z

D

(16)

Ahmad [13] theoretically solved the EDR in circular channels, as was done by Dey [6], who
solved equations numerically for the EDR, where Ahmad [13] used a series to solve the
equations. He derived the following EDD relationship for subcritical flow :

o Q 1 ¢y (Xc)*?
Q - g1/2D5/2 = 16\/5 Q)lZ(XCC)l/Z (17)

2.3. Theoretical approach
The set of characteristic parameters appropriate for free overfall phenomenon at the
end of a channel can be given in functional form as follows:

Q= fi(hel,mgm) (18)
where | = characteristic length parameter of a channel, and m = dynamic viscosity of fluid.
Using the Buckingham p-theorem and selecting the parameters |, g and m as repeating
variables, the non dimensional parametric equation in functional form can be given by:

Q"= fa(he’,m) (19)

WhereQ*=Q/ (g>° 12°),and h"e=he/|. Asit is not appropriate to use mas a free
parameter, arefinement of the above equation can be done as:

Q= fs(he") (20)

Dey [13] theoretically analyzed free overfall in horizontal elliptic channels, using the
momentum equation based on the Boussinesq approximation. So, we can use equation (17) to
estimate the EDD for éliptic channel with free overfall by substituting the major axis (a) ,
with the diameter of channel (d) as shown below :

VAN Q

Q = 205 a5 (21)

respectively, for different values of | (=a/b), where a is the major axis, and b is the minor

axis, as shown in Figure (1.c).
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3. Calculation of Flow Discharge in Horizontal Elliptic Channel With Free

Over fall

First, the free overfall from elliptic channels has been calculated by applying the
momentum equation based on the Boussinesq approximation. The method eliminates the need
of an experimentally determined pressure coefficient. In subcritical flows, the EDR has been
related to the critical-depth. On the other hand, in supercritical flows, the end-depth has been
expressed as a function of the streamwise slope of the channel using the Manning equation.
The mathematical solutions allow estimation of discharge from the known end-depth in
subcritical and supercritical flows. Streamline curvature at the free surface has been used to
compute the upstream flow profiles of a free overfall. The comparisons of the experimental
data with this model have been satisfactory for subcritical flows and acceptable for
supercritical flows.

The discharge of an elliptic channel with4 mlong and | (=a/b) ranging from 0.3 to 4
was calculated by using the following equation which was derived by Rohwer [15] :

Q=858 g%  p-# (22)

While The EDD ( Q") is calculated from equation (21) for an elliptic channel with
EDR (h;) = he / he, which can be calculated for two cases:

3.1 Subcritical Flow
The EDR predicated from momentum equation is:

hs 2Ky 23
= 3
e = (13 2F12) (23)
— Q
Where F, = W (24)

3.2 Supercritical Flow
In supercritical flow, the EDR h; is expressed as a function of relative slope S and
h.using Manning equation . Figure ( 2 ) show the relationship between EDR (h;) and

hCA = (h./ a), Figure (3) present the variations of h’e (=hg/a) with Q.
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Figure (2). Dependency of EDR h; on h; for different | .
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Figure (3). Variation of h, with Q" for different | in éliptic free over fall.
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4. Results and discussion

From the computations of flow discharge in the end of the channel and comparative
the variations of EDR h. with h’; as shown in Figure (2) , we can notice that the value of
EDR h% is approximately 0.725 for a wide range of h_. . Figure (3) show that The EDD Q"
increases with increase in h, . Table (1) shows that the computed values of Q~ have a slight
variation from the experimental observations of Dey [13] due to the assumption of pseudo-
uniform flow and the use of the Manning equation in small channels. The calculated
discharges, using the proposed EDD relationship, show excellent agreement with the
experimental values in subcritical flows. However, the agreement is not so good in

supercritical.

Table (1). Comparisons of experimental data of Dey [1] with computational data

obtained from present analysis.
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6. Nomenclature

a Major axis of elliptic channel (m)
A Flow area (m?)
b Minor axis of elliptic channel (m)

Coefficient of contraction
Coefficient of discharge

Channel diameter (m)
Specific energy (m)
Froude number of approaching flow

Ce

Cq

Cy Coefficient of velocity
d

E

F

g Gravitational constant (m.s?)
h

Flow depth (m)
h” h/a
h~ h/hc

hep Effective hydrostatic pressure head (m)
H Tota head (m)

I Characteristic length of channel (m)

L Length of control section (m)
Q Discharge (m®.s™)

Q™  Freeover low of elliptic Q/(g°°. &)
S Streamwise slope

T Top width of flow (m)

\Y Mean velocity of flow (m.s™)
I =ab

Subscripts

C Critical flow

e End section

o] Upstream section
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