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Abstract  

The aim of this work is to calculate the flow discharge in horizontal elliptic channels 

with free overfall at the end of the channel. Two methods are used, the first one is  Boussinesq 

approximation to calculate the End- Depth – Ratio ( EDR ) .The second one is a theoretical 

procedure applied to compute the flow over a sharp – crested weir.The available experimental 

data are used to verify the proposed End – Depth – Discharge (EDD) relationship. The 

calculated discharges, using the proposed EDD relationship, show excellent agreement with 

the experimental values in subcritical flows.  However, the agreement is not so good in 

supercritical. 
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 المستخلص 

الھدف من ھذا البحث ھو حساب كمیة التصریف  في القنوات ذات الشكل البیضوي من خلال الطفح الحاصل في نھایة 

لحساب نسبة العمق  ( Boussineq )الطریقة الاولى تمت باستخدام  تقریب    , استخدمت لھذا الغرض طریقتان.القناة 

رى فھي حساب كمیة التصریف فوق السد المنحي الحاد في نھایة القناة مع اما الطریقة الاخ. النھائي الى العمق الحرج

من خلال الاستعانة بالنتائج العملیة لدراسات سابقة ومقارنتھا مع النتنائج . فرض ضغط الماء مساوي صفر عند تلك النھایة 

الى التصریف متوافقة تماما مع النظریة لقیم التصریف وجد ان قیمة التصریف المحسوبة من خلال نسبة العمق النھائي 

بینما  ظھر عدم التوافق للنتائج في الحالتین سابقتي الذكر في حالة الجریان في , القیم العملیة في حالة الجریان شبة الحرج 

 ".الوضح الحرج جدا
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1. Introduction 

 A free overfall occurs when the flow detaches from the solid boundary to form a free 

nappe owing to an abrupt decrease in channel bed elevation (that is a drop structure)[1]. It 

offers a method of discharge measurement in open channels from a single measurement of the 

depth  at the brink known as end depth .  The value of the end depth depends on the shape of 

the approach channel. If the slope of the channel is negative, zero or mild, the flow at 

upstream of the fall will be critical. However, if the upstream channel is steep, the flow will 

be supercritical and normal depth occurs upstream of the brink[2].  

The measurement of  flow discharge in open channels is useful especially in channels 

having covers (sewer, duct, tunnel etc.) . Rouse [3], being the first to investigate the end-depth 

experimentally, proposed a relationship termed End-Depth Ratio (EDR = end-depth/critical-

depth), which was found to be 0.715 in mildly sloping rectangular channels.Diskin [4] applied 

a momentum equation between apparent and end sections and obtained an expression for end-

depth ratio (EDR), i.e., ratio of end depth to critical depth, YC. Rajaratnam and Muralidhar [5] 

introduced a pressure coefficient in the momentum equation and calculated EDR = 0.667, 

0.731 and 0.775 for subcritical flows in rectangular, parabolic and triangular channels, 

respectively. Dey [6] extended the use of the momentum equation to calculate EDR for others 

shapes of channels. The generalized energy method gives EDR = 0.694, 0.734 and 0.762 for 

subcritical flows in rectangular, parabolic and triangular channels, respectively. Anastasiadou-

Partheniou and Hatzigiannakis [7], Ferro [8] and Ahmad [2] simulated the free overfall with a 

sharp crested weir of zero height. Marchi [9] solved the two dimensional free overfall using 

cnoidal wave theory.  

Dey [10] presented a theoretical  and experimental study on free overfall in an inverted 

semicircular channel. He applied the momentum equation between the apparent section and 

the end section and found that EDR = 0.705 for subcritical flows up to the ratio of critical 

depth, and diameter 0.42. However, in the supercritical flow, the EDR decreases with increase 

in relative bed slope (ratio of critical bed slope, SC, to bed slope, S). He also found that 

computed discharges obtained through application of a momentum equation in supercritical 

flows are not comparable with the experimental ones. The reason for the disagreement is due 

to neglecting the stream-wise component of the gravity force in the momentum equation. 
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In this paper, two separate methods are presented to analyze the free overfall in elliptic 

channels, as shown in Figure (1)(a, b and c). First, an analytical model for a free overfall from 

smooth elliptic channels is presented, applying a momentum approach based on the 

Boussinesq assumption. Secondly, an alternate approach for a free overfall from elliptic 

channels is also presented. The model yields the end-depth ratio and end depth– discharge 

relationship, which are verified using the experimental data of previous studies. 

 

 

 

Figure (1). (a) Schematic view of a typical free overfall. 

(b) Streamline pattern of a free overfall. 

(c) Cross –section of an elliptic channel. 

 

2. Problem Formulation 
2.1. Boussinesq approximation 

The free surface curvature of a free overfall being relatively small varies from a finite 

value at the free surface to zero at the channel bed as shown in Figure (1). According to the 

Boussinesq approximation [11], a linear variation of the streamline curvature with depth y is 

assumed. Hence, the radius of curvature r of a streamline at y is expressed by: 

 

1/r = (y /h)(1 / rs)                                                                                                                   (1) 

 

a 

h 
b 

(c) 
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Where 

h =flow depth, and rs=radius of curvature of the free surface. For the small free surface 

curvature, it can be approximated by:  

 

1/rs = d2h/dx2                                                                                                                          (2) 

 

Where: 

x = streamwise distance. The normal acceleration ay based on the aforementioned assumption 

is given by: 

a y =k y                                                                                                (3) 

 

Where:  =   ℎ    ℎ                                                                                                                                              (4)  
Where V = mean flow velocity. Integrating the Euler equation (see Subramanya [12]), the 

effective hydrostatic pressure head hep is expressed by 

ℎ  = ℎ +                                                                                                                                 (5) 

Where g =gravitational constant. Eq. (5) obtained by Boussinesq [11] is applicable in solving 

problems with small curvature at the free surface, namely free overfall. 

The flow velocity at the end section is calculated by applying the Bernoulli equation 

on a streamline between the upstream section at x =- L and the end section at x = 0. The 

discharge Q is computed using the following equation: 

  =    2        ( −  )    
                                                                                                     (6) 

 

Where    Cd =  coefficient of discharge ( = Cv Cc), Cv= coefficient of velocity, Cc =  

coefficient of contraction,   t =channel width at an elevation y,  and H = total head. The total 

head H at the upstream section (x = -L) is given by  

  = ℎ +    2                                                                                                                                         (7)  
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2.2. End-depth–discharge relationship 

The free overfall is a special case of a sharp-crested weir, at the end of the channel and 

of zero height. The theoretical procedure applied to compute the discharge over a weir can 

also be applied to a free overfall to get the EDD relationship [8]. The flow velocity at any 

depth at free overfall is calculated by applying the energy equation between any two points 

located at sections o–o and e–e (see Figure (1).(a)). It is assumed that all the streamlines at the 

brink are parallel to each other, i.e., the emerging jet is undeflected. To account for the 

curvature of streamlines, i.e., the deflection of the jet due to gravity, a coefficient of 

contraction is considered. Zero pressure at the brink is assumed. The discharge through an 

elemental strip of thickness dyat a height y above the bed is given by:  

dQ= 2g{H − y}1/2T dy         (8) 

Where     g = acceleration due to gravity;    =   +          , T = top width, given by the 

following relationship: 

T = (D2− 4y2)1/2           (9) 

Where  D = diameter of the channel. Substituting Eq. (9) into Eq. (8), the total discharge is 

given by 

 

Q = CC 2 ∫ (      )   (1 −       )1/2dy                                                                               (10) 

Where CC= coefficient of contraction. Rearranging Eq. (10), one can get   =     2   /                                                                                                                                    (11) 

   =   8 [2     (2  ) +  4   (1 − 4   ) ] 
 =   8 ∅ (  )                                                                                                                                     (12) 

  =   (1 − 4   ) =  ∅ (  )                                                                                                  (13) 

Where:   =                                                                                                                                                    (14) 

 =     1 +         2                                                                                                                               (15) 
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Substitution of Eqs. (12) and (13) into Eq. (15) yields 

   =     1 +     16  ∅ (  )∅  ( )                                                                                                             (16) 

 

Ahmad [13] theoretically solved the EDR in circular channels, as was done by Dey [6], who 

solved equations numerically for the EDR, where Ahmad [13] used a series to solve the 

equations. He derived the following EDD relationship for subcritical flow :  ^ =    /   /  = 116√2∅  (  ) / ∅ (  ) /                                                                                             (17) 

 

2.3. Theoretical  approach 

The set of characteristic parameters appropriate for free overfall phenomenon at the 

end of a channel can be given in functional form as follows: 

Q =  f1 (he,l,m,g,m)                                                                                                            (18) 

where l = characteristic length parameter of a channel, and m = dynamic viscosity of fluid.  

Using the Buckingham p-theorem and selecting the parameters l, g and m as repeating 

variables, the non dimensional parametric equation in functional form can be given by:  

Q^=  f2(heˆ,m)                                                                                                                    (19) 

 

Where Q  ̂= Q/ (g0.5  l 2.5), and     hˆ e = he / l. As it is not appropriate to use m as a free 

parameter, a refinement of the above equation can be done as: 

Qˆ=  f3 (heˆ )                                                                                                                       (20) 

 

Dey [13] theoretically analyzed free overfall in horizontal elliptic channels, using the 

momentum equation based on the Boussinesq approximation.  So, we can use equation (17) to 

estimate the EDD for elliptic channel with free overfall by substituting the major axis (a) , 

with the diameter of channel (d) as shown below : 

  ^ =     .   .   .                                                                                                                                    (21) 

 respectively, for different values of λ(=a/b), where a is the major axis, and b is the minor 

axis, as shown in Figure (1.c). 
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3. Calculation of Flow Discharge in Horizontal Elliptic Channel With Free 

Over fall 
First, the free overfall from elliptic channels has been calculated by applying the 

momentum equation based on the Boussinesq approximation. The method eliminates the need 

of an experimentally determined pressure coefficient. In subcritical flows, the EDR has been 

related to the critical-depth. On the other hand, in supercritical flows, the end-depth has been 

expressed as a function of the streamwise slope of the channel using the Manning equation. 

The mathematical solutions allow estimation of discharge from the known end-depth in 

subcritical and supercritical flows. Streamline curvature at the free surface has been used to 

compute the upstream flow profiles of a free overfall. The comparisons of the experimental 

data with this model have been satisfactory for subcritical flows and acceptable for 

supercritical flows. 

The discharge of an elliptic channel with 4 m long and  λ (=a/b ) ranging from 0.3 to 4 

was calculated by using the following equation which was derived by Rohwer [15] : 

Q = 8.58  a0.62   . b1.82             (22) 

While The EDD ( Q^ ) is calculated from equation (21) for an elliptic channel with 

EDR (ℎ ~)  = he  / hc, which can be calculated for two cases: 

 

3.1 Subcritical Flow 

The EDR predicated from momentum equation is: 

 ℎ ~ = ( 2   1 + 2   )                                                                                                                                (23 ) 

 

Where        =   (       ) .                                                                                                      ( 24 ) 

 

3.2 Supercritical Flow 

In supercritical flow, the EDR  ℎ ~ is expressed as a function of relative slope S and ℎ ̂ using Manning equation . Figure ( 2 ) show the relationship between EDR (ℎ ~ ) and  ℎ  ^ = (ℎ / a ) , Figure (3) present the variations of hˆe (=he/a) with Q^.  
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Figure (3). Variation of   ̂ with Q^ for different λ in elliptic free over fall. 

 

 

 

Figure (2). Dependency of EDR     ~  on   ̂ for different λ. 
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4. Results and discussion  
 From the computations of  flow discharge in the end of the channel and comparative 

the variations of EDR h˜e   with   hˆc as shown in Figure (2)  , we can notice that the value of 

EDR  h˜e is approximately 0.725 for a wide range of ℎ ̂  . Figure (3) show that The EDD  ^ 

increases with increase in ℎ ̂ .  Table (1) shows that the computed values of Qˆ have a slight 

variation from the experimental observations of Dey [13] due to the assumption of pseudo-

uniform flow and the use of the Manning equation in small channels. The calculated 

discharges, using the proposed EDD relationship, show excellent agreement with the 

experimental values in subcritical flows.  However, the agreement is not so good in 

supercritical. 

 

 

Table (1). Comparisons of experimental data of Dey [1] with computational data 

obtained from present analysis. 

 

End – Depth - Ratio Experimental Computed   ̂   ̂   ~  ^  ^ 

0.206 0.149 0.721 0.0865 0.0917 

0.2462 0.175 0.711 0.1138 0.113 

0.45 0.325 0.721 0.2984 0.340 

0.478 0.345 0.723 0.3296 0.367 

0.529 0.38 0.719 0.3911 0.412 

0.497 0.357 0.718 0.3477 0.380 

0.323 0.232 0.719 0.1753 0.227 

0.361 0.261 0.726 0.2092 0.262 

0.169 0.124 0.736 0.0673 0.075 

0.193 0.144 0.749 0.0825 0.090 
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6. Nomenclature 
a  Major axis of elliptic channel (m) 

A Flow area (m2) 

b  Minor axis of elliptic channel (m) 

Cc Coefficient of contraction 

Cd Coefficient of discharge 

Cv Coefficient of velocity 

d  Channel diameter (m) 

E  Specific energy (m) 

F  Froude number of approaching flow 

g  Gravitational constant (m.s-2) 

h  Flow depth (m) 

hˆ h/a  

h˜ h/hc 

hep Effective hydrostatic pressure head (m) 

H  Total head (m) 

l  Characteristic length of channel  (m) 

L  Length of control section (m) 

Q  Discharge (m3.s-1) 

Q˜  Free over low of elliptic Q/(g0.5 . a2.5)  

S  Streamwise slope 

T  Top width of flow (m) 

V  Mean velocity of flow (m.s-1) 

λ         = a/ b  

Subscripts 

c  Critical flow 

e  End section 

o  Upstream section 

 

 


