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Abstract

The analysis of voltage series multistage feedback amplifier network is achieved by

evaluating the nodal admittance matrix of the equivalent circuit representing the replacing of

each transistor in a stage by its high frequency small-signal model and the performing of the

high order voltage transfer function of the system. The main reasons of treating such a wide-

band amplifier network are of its stabilized voltage gain and its ability to amplify the pulses

occurring in a television signal. The frequency response of the system is calculated and

confirmed. System dynamics and variation of input signal are obtained by calculating the

response of a continuous time system. The discrete-time equivalent to the analogue system

allows the system designer to choose an appropriate pulse transfer function to investigate the

performance of the system suitable for a given specifications and requirements. The software

powerful MAT-LAB version 7.2 techniques is used for treating the single expression transfer

function obtained by assigning numerical values and the response of the system in time and

frequency domain.
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1. Introduction

In a network design problems, numerical values are assigned to network elements and the

simulation process resulted in a single expression transfer function to give the designer an

ability to study the effect of network parameters on the network function in addition to the

repeated usage of the information used.

The analysis of complex systems or networks can be facilitated through some insight into

the internal structure of the elements constituting the system.

The wide-band voltage amplifier considered in the analysis of a multistage feedback

amplifier network has an improved bandwidth through the usage of an additional stage and a

flat response for minimum distortion in the signal. The negative feedback used in this network

stabilizes the closed-loop gain of the amplifier at a lower and predictable gain level [1]. The

voltage-series multistage feedback amplifier [2], depicted in Figure 1, is used in the analysis.

The treatment of the network is based on the investigation of the behavior of the network

under fixed parameters values. The advantages of treating such a network lie in the ability of

controlling the gain by introducing a feedback through resistor combinations and the use of

the feedback makes the system response insensitive to external disturbances and internal

variation in the system parameters. The analysis is considered in the high frequency region

and the flat response of the low pass filter network is obtained.

The descriptive and procedural side with the aid of additional facilities for examining the

network gives a general and accurate circuit suitable for extension, modification and modular

organization to the designer for future developments.

Complicated and tedious features of the network can be minimized by replacing each

transistor in a single amplifier stage by its small-signal hybrid-π model valid in any topology

as indicated in Figure (2), where the resistor R is

651 RRRR c

The nodal admittance matrix that describes the network is given by
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To characterize the input-output relationships of the LTI (linear time invariant) system

described by the nodal admittance matrix above the transfer function can be found as
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For hybrid-π parameters value, the magnitudes used for the elements of the hybrid-π model at

room temperature are;

VmA50mg , 100'bbr ,  K1'ebr , pF4eC , pF98cC

where mg is the transistor transconductance, 'bbr is the ohmic base spreading resistance, ebr '

is the input resistance, eC is the sum of the emitter diffusion capacitance and the emitter

junction capacitance, and cC is the collector junction capacitance. The magnitudes for the

other elements of the network are;

 K1401R ,  K502R ,  K121cR ,  K51eR ,  K493R ,  K324R ,

 K5.42cR ,  K52eR , 1251R ,  K2.52R , F61 C , F62 C ,

F103 C , F484 C , F485 C , F66 C .
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2. Transfer function analysis

According to the above magnitudes, the transfer function  sATF of the continuous-time

multistage feedback amplifier network is given by
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where s is a complex variable.

The partial fraction expansion [3] of  sATF has the form
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Clearly, the amplifier has three zeros
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The zeros and poles lie in the high frequency band. The frequency response characteristics of

the amplifier are obtained by the Bode plot. The adjusting of these characteristics by using

several design criteria gives acceptable transient-response characteristics [4], the high

frequency response can also be improved by using current amplifier [5]. Substituting js 

in Eq. 9 gives
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where  is the angular frequency. With the aid of MATLAB numeric computation software

[6], the Bode magnitude and phase plot are depicted in Figs. 3 and 4. It can be seen that the
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peak gain is dB2.32 at secrad100848.0 6  KHz5.13f , where f is the frequency.

The  dB29.2or28.84dB3 occurs at secrad1005.4 7  MHz455.6f .

3. Confirmation

A calculations can be made to confirm the value of the peak gain obtained from the Bode

plot with that evaluated above in the following procedure;

1- Evaluation of the output resistances and the voltage gain of each transistor.

2- Obtaining the voltage gain of the amplifier without feedback.

3- Determination of the feedback network.

4- Calculation of the voltage gain of the amplifier with feedback.

According to the stated procedure,

 957K1.1K32K49K1224311 iecL hRRRR

     K2.438K5.2125K5.42122 RRRR cL

where 1LR , 2LR , 2ieh are the output resistance of 1Q , the output resistance of 2Q , the   input

resistance with output short-circuited hybrid parameter of 2Q , respectively. The values of the

voltage gain of 1Q and 2Q are 1vA and 2vA are given by, (neglecting the reverse –open-

circuit voltage amplification hybrid parameter reh and the output conductance with input

open-circuited hybrid parameter oeh ), so
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where 1feh and 2feh are the short-circuit current gain hybrid parameters of 1Q and 2Q ,

respectively, 1ieh is the input resistance hybrid parameter of 1Q , and vtA is the voltage gain

of the amplifier without feedback. The value of the feedback network, , is given by

    0234.0K5.2125125211  RRR
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The voltage gain of the amplifier with feedback is

   dB11.32326.40
17.7120234.01
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since vtvf AA  the feedback is negative. The gain can also be confirmed from Eq. 9 as
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4. Continuous time responses

Complete information about dynamic characteristics of the system can be obtained by

exciting it with an impulse input and measuring the output. The transfer function stated

previously; however, contain same information about system dynamics as the response of a

linear system to a unit-impulse input when the initial conditions are zero. The unit-impulse

response is obtained by taking the inverse Laplace transform to Eq. 10.
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where  thA is a function of time t .

The amplifier at high frequencies responds to rapid variations in signals, the step input is

of the most available sudden function applied to the amplifier. The input-output relationship

of the amplifier  sTF Ast subjected to a step input is given by
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Taking the inverse Laplace transform yields the unit step response of the system given by

       
     tt

ttth Ast

99

99

100425.0exp18517.56102101.0exp13445.18

106597.0exp1974.1109874.1exp10953.0



 (15)

For gradual changing function, the unit ramp function is a good test signal. The input-

output relationship of the amplifier  sTF Ara subjected to a unit ramp input is given by
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Taking the inverse Laplace transform yields the unit ramp response of the system as a

function of time given by
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The unit impulse, step and ramp responses of the multistage feedback amplifier are depicted

in Figs. 5, 6 and 7, respectively. The type of transient response is determined by the closed-

loop poles, while the shape of the transient response is primarily described by the closed-loop

zeros. The poles of the high order transfer function of the multistage feedback amplifier does

not possess complex-conjugate values so the system is non oscillatory. It can be seen also

from Figs. 5 and 6 that the system is stable since the magnitudes of the poles lie in the left-

half s-plane [7] and the response will die out because the exponential terms in Eqs. 12 and 15

will approaches zero as time increases.

5. Discrete-time system

To simulate the continuous-time amplifier, the impulse invariant method is used [8].

So the design of the discrete-time amplifier from the continuous-time amplifier is as follows;

the z-transform of the unit sample response system,  zTFD is given by
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where ssTez  is a complex variable, sT is the sampling period and ....2,1,0n is an integer.

Clearly the discrete-time system described by Eq. 19 is stable [9] and  zTFD approximates

the system performance. The unit sample response of the analogue amplifier has a unit sample

response equivalent to the unit sample response  nhD obtained from Eq. 21 as
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The unit sample response system [10] for nS2sT and the parallel realization of Eq. 19 are

shown in Figs. 8 and 9. It is interesting to compare the magnitude response of two amplifiers,

for the analogue amplifier the magnitude response,  AM is
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and for the discrete-time amplifier, the magnitude response  DM is
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The magnitude responses of the two amplifiers are depicted in Figs. 10 and 11. Due to the

sampling operation, the amplitude response of the discrete-time system is scales by sT1 .

Therefore, a multiplication of  zTFD by sT1 is required to approximate the amplitude

response of the discrete-time system to the amplitude response of the analog system [11].

Thus the unit sample response,  zTFiD , of the impulse invariant discrete-time system

equivalent to  thA is given by
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The dc response for the analogue system is

 

dB6155.32576.40
100425.0

104162.2

102101.0

108542.3

106597.0

103023.1

109874.1

101894.0
0

9

9

9

9

9

9

9

9




















ATF

For the discrete-time amplifier, since for any variable x , if the sampling frequency is high,

sT is small, and

    sss xTxTxT  11exp

with this approximation,

   00 AD TFTF 

with good agreement. The input  zX and the output  zY relationship of the discrete-time

amplifier is given by
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and the corresponding difference equation is
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Taking the Fourier transform of this equation gives
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The phase response of the discrete-time system can be determined as
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From the observation of the frequency response of the discrete-time system and the

frequency response of the analog system, it can be seen that the first is periodic function of 

while the last is aperiodic. The unit step and ramp sample responses for the discrete-time

amplifier are given by
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and
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and both are depicted in Figs. 12 and 13, respectively for nS2sT .
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6. Conclusions

The analysis of a linear time invariant voltage series multistage feedback amplifier

network at high frequencies was performed. The nodal admittance matrix of the five nodes

network was constructed. An additional stage to the amplifier is possible to increase the

voltage gain but this complicates the nodal admittance matrix. The transfer function resulted

from the solution of the linear equations representing the system is the key function and it is

useful for both design and synthesis technique by selecting numerical values in the simulation

process. The value of the peak gain resulted from the nodal analysis and then evaluated from

the transfer function’s Bode plot was  738.40dB2.32 is confirmed with that calculated from

the evaluating the voltage gain in each stage (with the feedback network) which was

 326.40dB11.32 and the small difference between the two values occurs because of the

simulation process in the MATLAB. The transfer function has three zeros and four poles due

to the four capacitors in the network. The system exhibits high performance due to small time

domain quantities and the transient response of the system was nonoscillatory, in addition to

the system is stable since all the poles lies to the left of the imaginary axis. The impulse

invariant method is used to simulate the amplifier and a same magnitude is obtained for both

the continuous-time and discrete-time system. The steady state time which was s1015.0 6

was the same in continuous and discrete time system. The step and ramp response for the

discrete-time system is analogous to the continuous-time system.

Figure (1). Multistage feedback amplifier network.
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Figure (3). Bode magnitude plot for multistage feedback amplifier.

Figure (4). Bode phase plot for multistage feedback amplifier.

Figure (2). Small-signal hybrid-π model for voltage-series multistage  feedback amplifier.
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Figure (5). Unit impulse response of the multistage feedback amplifier.

Figure (6). Unit step response of the multistage feedback amplifier.
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Figure (7). Unit ramp response of the multistage feedback amplifier.

Figure (8). Unit sample response of a discrete-time feedback amplifier.
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Figure (9). Simulation of an amplifier network by impulse invariant method.
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Figure (10). Magnitude response of analogue amplifier.

Figure (11). Magnitude response of a discrete-time feedback amplifier.
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Figure (12). Unit Step sample response of a discrete-time feedback amplifier.

Figure (13). Unit ramp sample response of a discrete-time feedback amplifier.
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