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Abstract

A back-propagation neural network (BPNN) model is developed to predict the punching
shear strength of square ferrocement slabs. The experimental data used for training and testing
the neural network model, are collected from several sources. They are arranged in a format
of seven input parameters (the effective span, slab thickness, yield tensile strength of wire
mesh, volume fraction of wire mesh, mortar compressive strength, width of square loaded
area, boundary condition of the supported slabs) and one output parameter (punching shear
strength). A parametric study is carried out using BPNN to study the influence of each
parameter affecting the punching shear strength of ferrocement slabs. A comparison with the
experimental results and those from other existing empirical equations demonstrates that the
predictions from BPNN are indeed better. We conclude that the BPNN model may serve as a
good tool for predicting the punching shear strength.
Keywords: Ferrocement; Punching shear; Slabs; Strength; BPNN.
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1. Introduction

With the rapid progress in innovative construction techniques, application of ferrocement
is becoming increasingly common for use in various structural engineering applications. This
has led significant research activities for this material resulting in considerable volume of
technical information on design, construction, maintenance and rehabilitation techniques
using ferrocement.

Ferrocement is a composite material constructed by cement mortar reinforced with closely
spaced layers of wire mesh [1-5]. The ultimate tensile resistance of ferrocement is provided
solely by the reinforcement in the direction of loading. The compressive strength is equal to
that of the unreinforced mortar. However, the analysis and design of ferrocement elements is
complex and is based primarily on the reinforced concrete analysis using the principles of
equilibrium and compatibility [6]. Most of the applications of ferrocement is in civil
engineering structures are for the situations where high tensile strength or small crack width is
the governing criteria. Also the use of ferrocement is not limited to stressed skin elements
alone. In applications with ferrocement as plate structural elements, it becomes necessary to
understand the punching shear behavior of ferrocement. There are few papers available in the
literature on the behavior of ferrocement slabs under punching shear. Paramasivam and Tan
[7] presented an experimental study to evaluate the punching shear strength of ferrocement
slabs. They considered the effect of the effective span to depth ratio, thickness of the slab,
volume fraction of reinforcement, mortar strength, size of the load bearing plate and the
spacing of the skeletal steel. Mansur et al. [8] considered a tests on 31 simply supported
square ferrocement slabs under a central concentrated load to estimate the punching shear. All
slabs failed in punching shear. Authors found that the punching shear increased with an
increase in the thickness of the slab, volume fraction of reinforcement, mortar strength, size of
the load bearing plate and decrease as the effective span is increased. Based on the
experimental results, they developed an empirical formula to estimate the punching shear
strength. Al-Kubaisy and Jumaat [9] presented a study on the behavior of simply supported
ferrocement slabs under punching shear. The effects of the parameters as presented in [7] and
shape of the loading area on the punching shear strength are examined. Mansur et al. [10]
carried out an experimental study on a 14 restrained ferrocement slabs under a central load.
The slab are supported and restrained on all four sides by edge ribs. They investigated the
punching shear strength of slab and effect of the degree of the end restrained in adding to the
effect of thickness of slab, mortar strength, size of loaded area and volume fraction of

reinforcement.
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The relationships used to estimate the punching shear strength are empirical formula and
their predictive abilities are limited by the corresponding data sets from which they are
derived. In some cases, these methods do not provide reliable predictions for use in practice.
Over the last few years or so, the use of an alternative approach to modeling based on
artificial neural networks (ANNS) has increased in many areas of engineering. In particular,
ANNSs have been applied to many structural and geotechnical engineering problems. Neural
networks are an observational model developed on the basis of available data representing a
mapping between input and output variables. The main advantage of ANNs is that one does
not require an explicit model or equation, which is a prerequisite in the conventional approach
[11]. In other words, when the information available for constructing the model is only
available in the form of data derived from observations or measurements, neural network
models, based on the input/output variables systems, have been successfully used to generate
the relationships between these variables. The typical ANN model consists of a number of
artificial neurons variously known as processing elements or nodes that are usually arranged
in layers, more information on the use of ANN models in engineering applications may be
found in ([12,13]. Back-propagation neural network are the most commonly used type of
networks in structural engineering applications where a set of input parameters are mapped
through single or several hidden layers, using weights, into output parameters.

The purpose of this study is to develop a BPNN based model to evaluate the punching
shear strength of ferrocement slabs. The performance of the BPNN model is compared with
experimental data and other empirical models. The developed BPNN model is also utilized to
evaluate the effect of various variables which govern the behavior of such structure. The study

is based on an available database resulting from tests on 68 specimens.

2. Existing models to estimate punching shear strength

Several models have been proposed to theoretically predict the punching shear strength of

ferrocement slab. A brief summary of select models only are given in the following:

2.1- ACI building code equations[14]
The punching shear strength of ferrocement slabs was estimated using the equation

proposed for reinforced concrete by ACI 318 code. The punching shear strength (1;,) is taken
as the smallest of the following

a) V, = (H%Nfc’uod (1)
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b) Vo= (524 2) F u d @
©) Vi, =4Vfud 3)

2.2-Al-Kubaisy and Jumaat equation[9]
An empirical equation is proposed by Al-Kubaisy and Jumaat to predict the punching shear

strength based on tested ferrocement slabs. The proposed equation can be written as

Vi = ey . d. [0.07(f)® + 0.35(p) 1] (o5 + 0.2)125 (=)0 (4)

where:

5.32.h + 0.25a
u., = 4[0.75a + —

f-u: cube compressive strength < 60 N/mm?
p:100 A /b.d <3
h: total thickness < 30mm
a: side dimension of a square loaded area or equivalent square for rectangular or circular
loaded area
2.3-Mansur et al. equation [8]
Mansur et al. presented an empirical equation to predict the punching shear strength of

ferrocement. The final expression of proposed equation is given in the following

Vi = 045 (f)3 (0)*5 (D3 up. h (5)
where
U, =4(w+2.k.h)
k=1.5

3. Neural network

3.1 Neural network architecture
A Neural network model may be thought of as black box device that accepts inputs and

produces outputs [15]. The commonest type of artificial neural network consists of three
groups or layers of units: input layer units connected to one or two layers of hidden units
which is/are connected to a layer of output units. The function of input layer is to receive
input or information from the outside world, and to pass this information to the network for
processing. These may be either sensory input or signals from other systems outside the one

being modeled.
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The number of input neurons corresponds to the number of input variables into the neural
network, and the number of output neurons is the same as the number of desired output
variables. The number of neurons in the hidden layer(s) depends on the application of the
network. In engineering problems, the numbers of input and output parameters are generally
determined by design requirements.

As inputs enter the input layer from an external source, the input layer becomes activated
and emits signals to its neighbors (hidden layer) without any modification. Neurons in the
input layer act as distribution nodes and transfer input signals to neurons in the hidden layer.
The neighbors receive excitation from the input layer, and in turn emit an output to their
neighbors (second hidden layer or output layer). Each input connection is assigned weight
factor or connection strength. The strength of a connection between two neurons determines

the relative effect that one neuron can have on another.

3.2 Elements of neural networks

The basic component of a neural network is the neuron, also called node, or the processing
element (PE). Nodes contain the mathematical processing elements which govern the
operation of a neural network. Figure 1 illustrates a single node of a neural network, in which

it can be distinguished:

a- Inputs and outputs

Inputs are represented by ai, az, ..., and a,, and the output by b;. Just as there are many
inputs to a neuron, there should be many input signals to the PE. The PE manipulates these
inputs to give a single output signal.
b- Weighting factors

The values wyj, Wy, ..., and wy; are weight factors associated with each input to the node.
This is something like the varying synaptic strengths of biological neurons. Weights are
adaptive coefficients within the network that determine the intensity of the input signal. Every
input (ai, a, ..., an) is multiplied by its corresponding weight factor (wsj, Wyj, ..., W), and the
node uses this weighted input (wyj a1, Wy @, ..., Wnj an) to perform further calculations. For a
positive weight factor, (wj; a;) tends to excite the node, and for a negative weight factor, (wj;
a;) inhibits the node. In the initial setup of a neural network, weight factors may be chosen
according to a specified statistical distribution. Then these weight factors are adjusted during

the development of the network or learning process.
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c- Internal threshold

The other input to the node is the node’s internal threshold, T;. This is a randomly chosen
value that governs the activation or total input of the node through the following equation
[15].

Total activation=X; = yii; (Wi a;) — T; (6)

The total activation depends on the magnitude of the internal threshold T;. If T; is large or
positive, the node has a high internal threshold, thus inhibiting node-firing. If T; is zero or
negative, the node has a low internal threshold, which excites node-firing [15]. If no internal
threshold is specified, a zero value is assumed.

d- Transfer functions

The node’s output is determined by using a mathematical operation on the total activation

of the node. This operation is called a transfer function. The transfer function can transform

the node’s activation in a linear or nonlinear manner [15].

3.3 Training the network

Training is the process by which the neural network systematically adjusts the weights of
interconnections between nodes so that the network can predict the correct outputs for a given
set of inputs. There are many different types of training algorithms. One of the most common
classes of training algorithms for feed-forward interlayer networks is called back-propagation.
In a back-propagation algorithm, a set of inputs is fed to the network and outputs are returned.
Then, the network compares its output with the output of the actual data set. The network
calculates the amount of error between its predicted output and the actual output. The network
works backwards through the layers, adjusting the weight factors according to how much
error it has calculated in its output. Once all of the weight factors have been adjusted, the
network works in a forward path, taking the same input data to predict the output, based on
the new weight factors. The network again calculates the error between the predicted and
actual outputs. It adjusts the weight factors and the process continues iteratively, until the

error between the predicted and actual outputs has been minimized.

3.4 Generalization

After learning or training, the network should extract regularities or rules from the training
data and be able to generalize (during testing), to give the right answers for input not

belonging to the training sets. When the network is trained with a randomly selected set of
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examples and tested with another set of inputs, the expected number of correct results is
called generalization capability. Generalization capability can be used to evaluate the
behavior of the ANN [16].

4. BPNN model: This study
A BPNN model developed for this study is used to predict the punching shear strength of

ferrocement slabs. The Neural Network Toolbox of MATLAB [17] is used to develop a
BPNN model for this problem. The results from the available study in the literature[7-10]
were used to compile a set of 68 experimental data, which is divided into two groups, one for
training and another for testing.

Seven variables are selected as input to BPNN model. These variables are: the effective

span (1), slab thickness (h), yield tensile strength of wire mesh (f;), volume fraction of
reinforcement (v;), mortar compressive strength (f/), width of square loaded area (w),

boundary condition of the supported slabs (7). The output variable is the punching shear
strength of ferrocement slab. Table 1 summarizes the ranges of the different variables. The
data used in this study are summarized in Table A in the Appendix.

Through a set of trials, a network of two hidden layers with five neurons in each layer was
found to yield an optimal configuration, with minimum mean square error (MSE). The
number of hidden layers, number of hidden nodes, and transfer functions are chosen to get the
best performance of the model. After the errors are minimized, the model with all the
parameters including the connection weights is tested with a separate set of testing data that is
not used in the training phase. At the end of the training, the neural network represents a
model that should be able to predict the target value (punching shear strength) for given the
input pattern.

The network was trained continually through updating of the weights until the final error of
1.37*%10° was achieved after 500 epochs. Figure. 2 shows the performance for training and
testing data sets. The network performance with back-propagation training algorithm have been
tested for training and testing patterns, as shown in Figures. 3 and 4. The predicted values
were found to be in good agreement with the actual (target) values.

5. Graphical user interface (GUI) of BPNN program

The graphical user interface (GUI) developed for the BPNN program is presented in
Figure. 5. GUI provides a user friendly platform run the analysis using intuitive text boxes.
The GUI represents a simplified tool to use the developed neural network to predict the

punching shear strength of ferrocement slab. A window is provided through which the input

91



Thi_Qar University Journal for Engineering Sciences, Vol. 3, No. 2 2012

data is introduced and the results of network are displayed in the same window or in an
output file. The results include the output of the network and the regression analysis for both
the training and testing phases. The main advantage of the GUI is the short time that used to

predict the punching shear strength. nine seconds is enough to get the result.

6. Parametric study
Once the artificial neural network has been trained, a parametric analysis is conducted to

study the influence of the various parameters on the punching shear strength of slabs. The
most important conclusions are given in the following.

In Figure (6) the punching shear strength of ferrocement slab is plotted versus the total
thickness of slab (h). It can be clearly seen from the figure that an increases in h causes the
punching shear strength to increase. This is so because larger h increases the stiffness and
strength of slab. This conforms to the observations reported by [8-10].

Figure (7) shows the effect of compressive strength of mortar( f/) on punching shear
strength of ferrocement slab. It can be seen from this figure that as (f.), increases, the
punching shear strength slightly increased. A reasonable agreement is achieved between the
results from experiments [8,10] and those of the neural network.

The influence of the volume fraction of reinforcement () on the punching shear strength
as predicted by artificial neural network is presented. Figure (8) shows that the punching
shear strength can be improved substantially by an increase in v¢. In general this finding is in
agreement with other experimental results [7-10].

The width of square loaded area (W) also, is important parameter, because this parameter
has significant effect on behavior of ferrocement in punching shear. Figure (9) shows that the
punching shear strength increases with an increase in w. This is because a larger load area
required a longer critical perimeter for punching shear to occur. The increase in critical
perimeter means a higher load , as also concluded by Mansur et al. [8].

The effective span (1) also has an influence on the punching shear strength of ferrocement
slabs. Figure(10) shows that the relationship between the effective span and punching shear
strength. It can be seen that when [ decrease the shear strength increase. In other words, a
decrease in the [ /h ratio that achieved by changing the effective span length leads to increase
the punching shear strength, but the increase is not as pronounced as in the case of changing
the depth. These results are in agreement with other experimental results by [8,9].

Finally, the influence of end restraint on the punching shear strength of ferrocement slabs it

may be observed in Figures( 6 to 10). It can be concluded that the restrained slabs exhibited
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higher strength than the corresponding simply supported slabs. Mansur et al. [10] attributed
that to the development of higher membrane stresses in the restrained slabs. It should be noted
that the range of data of restrained slabs considered in our model is very limited because of

the data available. The authors are aware of this limitation.

7. BPNN prediction: Comparison with experimental and theoretical results
The predictions of punching shear strength of ferrocement slabs as obtained from BPNN,

ACI code and two empirical equation as mentioned in section 2 are compared with the
experimental results and shown for both training and testing sets in Figures( 11 and 12) and
Table (2).

Table (2) summarizes the average and standard deviation of the ratio of the experimental
punching shear strength (17,) to predicted (V;). The BPNN model gives an average V,/ V; ratio
for training and test data sets of 1.0 and 1.07, and standard deviation of 0.1 and 0.14,
respectively. These values indicate that the proposed BPNN model can predict more reliably
the punching shear strength compared to the other three models. Figures (11 and 12) confirm
the same conclusion that the predictions of BPNN model are better than those of the three
empirical models. Table (3) also confirms this conclusion when comparing the correlation
factor coefficient for all models for both training and test data sets. Values of 0.995 and 0.96
for the BPNN training and test data sets, respectively, are close to 1.0 and higher than that of

the other three models.

8. Conclusion
In this study a model based on back-propagation neural network (BPNN) is developed to

predict the punching shear strength of ferrocement slabs. A database from the results of sixty
eight (68) tests is data developed from the review of literature, which is used for the training
and testing of this BPNN model. Seven variables are selected as input to BPNN model with
one target variable, punching shear strength.

A parametric study based on BPNN demonstrates that the network is able to learn and
generalize, and thus captures quite well effect of each input variables on the final output.

The predictions of punching shear strength of ferrocement from BPNN model are
compared those from three other available empirical models, as well as to those from
experimental results. It is found that the predictions from BPNN are indeed better. We
conclude that the BPNN model may be serve as a good tool for predicting the punching shear
strength.
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Table (1). Range of input parameters in the database.

2012

No. Parameter Range
1 [ (mm) 400-1200
2 h (mm) 10-70
3 f (MPa) 21.5-72.6
4 f» (MPa) 362-485
5 vy 1.01-7.6
6 w (mm) 40-200
7
. Simply supported slabs (S.S)or restrained
slabs (R.S)
Table (2). Comparison of punching shear prediction.
Average of V. /V; STDEV of V. !/ V;
No. [BPNN|ACI [Mansur Al BPNN| ACI [ Mansur| Al Kubasy
Dataset | gec. [14] let al. [8]| Kubasy [14] letal. [8]]  and
and Jumaat [9]
Jumaat [9]
Training| 56 | 1.00 [0.76| 1.23 1.46 0.10 |0.24| 0.24 0.51
Testing [ 12 | 1.07 [0.81| 1.26 1.45 0.14 |0.22| 0.20 0.42
Table ( 3). Comparison of correlation coefficient, R.
Model R
Training Testing
BPNN 0.995 0.96
ACI [14] 0.89 0.79
Al Kubasy and Jumaat [9] 0.89 0.74
Mansur et al. [8] 0.96 0.92
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Figure(3) .BPNN punching shear strength for training data set.
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Figure (4). BPNN punching shear strength for testing data set.
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Figure (11). Experimental versus predicted punching shear for training data sets.
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10. Notation
Ag: cross-sectional area of reinforcement (wire mesh)

b:side dimension of square slab

d : effective depth of slab

f+: compressive strength of mortar

Jfy : yield strength of wire mesh

h:total depth of slab

[: span length

r: boundary condition of the supported slabs

u,: rectangular critical perimeter at distance 0.5d from face of column
17, punching shear strength

v¢: volume fraction of wire mesh

w :size of loaded area

as: constant used to compute shear strength in slab

B: ratio of long to short sides of the loaded area or column

p: reinforcement ratio
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Appendix
Table (A). Experimental data used to construct the BPNN model
Test l h £ y Vr w r V, | References
No. mm | mm | MPa | MPa | mm mm mm kN
1 400 20 475 364 | 2.53 40 S.S 9.45
2 400 20 52.7 364 | 2.53 40 S.S 8.9
3 400 20 475 364 | 2.53 80 S.S 10.82
4 400 20 57 364 | 253 50 S.S 10.75
5 400 20 475 364 | 253 50 S.S 9.48
6 400 20 57 364 | 253 60 S.S 10.63
7 400 20 475 364 | 253 60 S.S 11
8 400 20 52.7 364 | 2.53 80 S.S 12.06
9 400 20 35.2 364 | 2.53 50 S.S 8.55
10 400 20 | 352 | 364 | 253 80 S.S 968 | Mansuretal
11 400 20 42.8 364 | 253 40 S.S 7.76 %)
12 400 20 42.8 364 | 253 50 S.S 8.82
13 400 20 42.8 364 | 253 60 S.S 9.17
14 400 20 42.8 364 | 2.53 80 S.S 12.16
15 400 20 726 364 | 2.53 50 S.S 12.38
16 400 20 726 364 | 2.53 80 S.S 14.5
17 400 20 56.5 413 1.01 50 S.S 5.39
18 400 20 56.5 362 1.93 50 S.S 9.75
19 400 20 475 | 3655 | 3.16 50 S.S 13.56
20 400 25 54.7 362 3.86 50 S.S 18.02
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21 400 20 | 475 | 364 | 5.06 50 S.S 145

22 400 20 | 475 | 364 76 50 S.S 18

23 400 10 | 547 | 362 | 386 50 S.S 3.99

24 400 15 | 547 | 362 | 386 50 S.S 6.37

25 400 20 | 547 | 362 | 3.86 50 S.S 11.38

26 400 30 | 547 | 362 | 3.86 50 S.S 23.84

27 600 20 | 565 | 364 | 2.53 50 S.S 9

28 900 20 | 565 | 364 | 2.53 50 S.S 7.76

29 600 35 | 466 | 485 | 1.94 100 S.S 242 | Paramasivam
30 1200 35 | 466 | 485 | 1.94 100 S.S 23 i’;‘:}
31 900 35 | 466 | 485 | 1.21 100 S.S 18 7]
32 900 35 | 466 | 485 | 3.88 100 S.S 30.6

33 900 22 | 5064 | 485 | 1.94 100 S.S 14

34 900 57 | 466 | 485 | 1.94 100 S.S 72

35 900 70 40 485 | 1.94 100 S.S 71.8

36 900 35 | 364 | 485 | 1.94 100 S.S 237

37 900 35 60 485 | 1.94 100 S.S 25.3

38 900 35 | 446 | 485 | 1.94 200 S.S 30.2

39 900 35 | 466 | 485 | 1.94 100 S.S 24.8

40 900 35 | 466 | 485 | 3.15 100 S.S 35

41 900 35 | 446 | 485 | 1.94 150 S.S 27.6

42 750 30 | 5824 | 406 | 3.55 100 S.S 34

43 750 30 | 5824 | 406 | 2.44 100 SS ”5

44 750 30 | 5824 | 403 | 2.03 100 S.S 27

45 750 30 | 5824 | 390 1.4 100 S.S 21

46 750 30 | 5824 | 390 | 1.05 100 S.S 18

47 750 20 | 57.28 | 409 | 2.38 100 S.S 9

48 750 27 | 5728 | 399 | 2.61 100 S.S 19

49 750 40 | 57.28 | 406 25 100 S.S 38 Al-Kubaisy
50 750 30 | 215 | 403 | 2.03 100 S.S 23 and
51 750 30 29 403 | 2.03 100 S.S 25 Jumaat
52 750 30 | 5712 | 403 | 2.03 150 S.S 27 [l
53 750 30 | 58.24 | 406 | 3.34 100 S.S 39

54 750 30 | 477 | 403 | 2.03 100 S.S 26

55 750 30 | 5712 | 403 | 2.03 133 S.S 24

56 750 30 | 5712 | 403 | 2.03 100 S.S 22

57 420 20 | 556 | 364 | 2.53 40 R.S 129

58 420 20 | 508 | 364 | 2.53 50 RS 142

59 420 20 | 563 | 364 | 2.53 80 RS 16.54

60 420 20 | 334 | 364 | 253 50 RS 12.97

61 420 20 | 435 | 364 | 253 50 RS 13.4

62 | 420 | 20 | 60 | 364 | 253 50 RS 1513 Mans%eta"
63 420 20 50.8 364 1.93 50 R.S 10.95 L10]
64 420 20 | 508 | 364 | 3.86 50 RS 1551

65 440 15 | 508 | 364 | 3.86 50 RS 10.71

66 440 30 | 508 | 364 | 3.86 50 RS 25.21

67 420 20 | 556 | 364 | 2.53 60 RS 15.06

68 440 25 | 508 | 364 | 3.86 50 RS 20.06
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