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Abstract 
A theoretical analysis for the free , axisymmetric, vibrations of an isotropic thin 

oblate spheroid shell filled partially or completely with an incompressible, non-viscous, 

irrotational fluid is considered. The Rayleigh – Ritz's method is used to obtain an 

approximate solution which coincides with the exact solution for the cases of an empty or 

completely filled shell. 

The vibration of the shell is examined using the non – shallow shell theory. The 

analysis is based on considering the oblate spheroid as a continuous system constructed 

from two spherical shell elements matched at the continuous boundaries. Solutions are 

presented to show the effect of the angle of filling fluid on the shell natural frequencies. 

The effect of shell geometric parameters on the frequencies is also investigated. Natural 

frequencies are calculated for the shell in both empty and filled cases. It was found that 

their frequencies are decreased with the increase of fluid level in the shell. The analytical 

solution is compared with available test results. Good agreement is shown between test 

results found in the literature and predicted natural frequencies.  

Keywords: Oblate spheroid, thin shells, axisymmetric spheroid, incompressible fluid.  
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 المتناظرة المحور نحیفة الجدران شبھ البیضویة الشكل المحتویة على مائع الاھتزازات الحرة للقشریات
  

  المستخلص
  

المحور   ةالشكل المتناظر ةللاھتزازات الحرة للقشریات نحیفة الجدران شبھ البیضوی نظریاً البحث تحلیلاً ھدا یتناول        

وقد  .عدیم اللزوجة وغیر قابل للانضغاط ،بمائع ساكن  أو كلیاً والمتشابھة الخواص في جمیع الاتجاھات والممتلئة  جزئیاً

للحصول على الحل التقریبي والذي یطابق الحل الدقیق لحالات القشریة الفارغة  Rayliegh – Ritz)(استخدمت طریقة 

  .والمملوءة بالكامل

وتعتمد ھذه التقنیة على أساس القشریة شبھ البیضویة . لاختبار اھتزازات القشریة) نظریة القشریات العمیقة ( وقد تم استخدام  

  .متناظرتین على طول حدودھا المستمرةمن قشریتین نصف   كرویتین  ةكمنظومة مستمرة مركب

تم احتساب الترددات الطبیعیة للقشریة في . تم عرض الحلول لبیان تأثیر زاویة الإملاء  للمائع على الترددات الطبیعیة للقشریة

التحلیل النظري مع وقورنت نتائج . حالتیھا الفارغة والمملوءة ووجد بان ھده الترددات تقل بزیادة مستوى السائل داخل القشریة

  .جیداً النتائج المتیسرة للبحوث ذات العلاقة حیث أظھرت تطابقاً

 

 

1. Introduction 
         Dynamic characteristics of oblate spheroidal shell filled with fluid are of great 

important in a variety of engineering applications ,such as, vibration of liquid oxygen tanks 

which are important components in upper stages space vehicles, and many other 

engineering and industrial systems. To show the resonance problem which is considered 

one of the important dynamic problems which results from these applications, free vibration 

of this type of shells are studied. 

         Although numerous papers have been written on the free vibration of oblate 

spheroidal shell, no work appears to have been done on the problem of fluid- filled 

isotropic oblate spheroidal shell. Nevertheless, there exists many papers in the case of 

spherical shell filled with fluid. Hoppmann[1]. Discussed both free and forced vibrations of 

a thin elastic orthotropic spherical shell, which is the general case of Love's spherical shell 

problem. Penzez and  Burgin [2]. Discussed the problem of free vibration of thin isotropic 

oblate spheroid shell, Galerkin's method was employed. The effect of bending on vibration 

of spherical shell was reported by Kalinin's [3]. AL-Jumaily and Najim [4] considered  the 

free vibration characteristics of an oblate spheroidal  shell. They used Rayleigh variation 

method to obtain the natural frequencies and mode shape. Natural frequencies of an elastic 
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hemispherical shell filled with a liquid and subjected to axisymmetric  vibrations has been 

formulated by Tai and  Wing [5]. The general non-axisymmetric free vibration of an 

isotropic elastic spherical shell filled with a compressible fluid medium is investigated by 

Chen and Ding [6]. Hayak & Dimaggio [7]. and Yen & Dimaggio [8] have considered the 

axisymmetric extensional motion of submerged spheroidal shell, free and forced, 

respectively. Engin and Lin [9] considered the free vibration of a thin, homogenous 

spherical shell containing fluid. The solution of vibration of a fluid-filled spherical 

membrane appears in Morse and Feshbach [10].Recently, free vibration of a thin spherical 

shell filled with a compressible fluid is investigated by Mingsian & Kuonung [11]. 

      This study was undertaken to examine the effect of fluid filled on the vibration of thin oblate 

spheroidal shells. The comparison was made between the shell in cases of empty and filled with 

incompressible fluid like water. From the results, the changes of the natural frequencies of the 

mode of vibration will occur.  Rayleigh – Ritz's method  will be used to investigate the free 

vibration characteristics of this type of shells. 

 

2. Equations of motion 
The theoretical model in this paper consists of a thin elastic oblate spheroid shell 

under free, axisymmetric, non-torsional vibration filled with incompressible fluid. The 

analysis based on a non-shallow shell theory and Rayleigh-Ritz method to derive the 

equation of motion and then obtain the natural frequencies in cases of empty and filled 

shells. 

 

2.1.  Formulation of the problem  

From the geometry shown in Figure (1) ,an oblate spheroidal shell is modeled as a 

structure composed of two spherical shells joined rigidly at their ends. Centers of curvature 

of their elements fall along the minor axis of the proposed structure. The radius of curvature 

at the apex of the shell (Rr) can be obtained from the geometrical formulation [2]  :                                               

2/322

2

)'cos1(
)1(

Φ−
−

=Φ e
eaR                                                                            (1)                                                  

Setting ( Ф' ) to zero results the radius of the shell at the apex as: 
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 e = 0  for sphere    ,     e = 1  for plate.    

An approximate opening angle ( Ф0) may be obtained by using the following formula: 

r

r
o R

bR −
=Φ − 1cos                                                                                                         (4)                                                              

 
Assuming that the temporal and spatail dependence of the free vibration are separable, the  
transverse displacement  and the tangentail  displacement may be assumed as [4]: 
 
w(Φ, t) = W(Φ) . tωcos  
                                                                                                                                              (5) 
uΦ(Φ, t) = UΦ (Φ) . tωcos  
 
 
      Where ( ω ) denotes the circular frequency, t: time and Φ  denotes the angle measured from 
the (vertical axis). The actual Φ  - dependent coefficient of the varaible was derived in Kalanins 
 [ 3 ], as follows: 
 

))()(()(
3
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xQBxPAW nii
i
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i
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Where 
 

[ ]
)1/()1(1

)1)(1(/)2(1
22 ξνξλν

ξνλ
+Ω−+−−

++−+
=

i

i
iD   , iin λ++−= 25.05.0 ,  

                                                                                                                                              (7) 
22 /12 hRr=ξ ,     Φ= cosx  

 

The parameters si 'λ are the roots of the cubic equation : 
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The non-dimensional frequency is defined as:  

      ERr /222 ρω=Ω                                                  (9)                           
 
 
 
 
 
 
 
  
 
                                                                                                                               b 

. 
                                                                                                             major axis                                                                                                      
                                                                                                                         effective radius        
                                                                                                                                                              Rr 
                                                                                                                                                
                                                                                                                                                opening angle Фo                                                                                                                             
                                                                                                        
                  
 a 
                                                       
                             
                                                                                  
  
 

 

2.2  Energy method 

Because of the complexity encountered in solving the exact equation of motion of an 

oblate spheroidal shell, an approximate energy approach based on Rayleigh-Ritz's method 

is used. Rayleigh-Ritz's method is an extension of Rayleigh's quotient which can be used 

for more complex elastic bodies and helps to determine the natural frequencies and their 

associated mode shapes with general boundary conditions in an approximate form. In order 
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Two  spherical  shell  
elements  to  be  joined  
at  the  edge  to  
approximate  the  
oblate  spheroid 

         Oblate  spheroid 
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Figure   ( 1 ). An  oblate  spheroid  and  its  approximate  of  
two  spherical  shell  elements  joined  at  the  edge.     
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to apply Rayleigh method, and its extension, the Rayleigh-Ritz's procedure, we need to 

derive expression for the maximum kinetic and potential energies. Physically, the frequency 

oscillation is found from the ratio of these energies [12]. 

The kinetic energy of the system is defined to be: 

fs TTT +=                                                                                                (10) 

Where the kinetic energy ST  of an oblate spheroidal shell is: 

[ ] [ ][ ] dzddRRwuT
h

h
S θρ θφ

ππ

''sin22

2
1

2

0

2

0

2/

2/

ΦΦ+= Φ
••

−
∫∫∫                      (11) 

And the kinetic energy fT of incompressible ,non-viscous, irrotational fluid is given 

by: 

[ ] drddRRwT f

r

f αρ θ

απ

'sin2
2

0

2

00

ΦΦ′= Φ
•∫∫∫                                           (12) 

The dot indicates a time derivative. 

The strain energy of the shell is given by [13]: 

U = ∫
−

2/

2/

h

h
∫
π2

0
∫
π2

0
2
1 [бФ '  Є'Ф'  + б θ Є 'θ ] RФ   Rθ sin Ф' dФ dθ dz                           (13) 

 

The stress in terms of strain are defined as [13]: 

бФ ' = 
)1( 2v

E
−

[ Є'Ф'  +  υ Є'θ ]  ,   бθ = 
)1( 2v

E
−

 [ Є'θ  +  υ Є'Ф ' ]                     

and                                                                                                             (14)                   

Є'Ф' = Є °
Ф + Z KФ                            ,   Є'θ   = Є° θ + Z K θ                                                                                                                
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At the natural frequency (ω), and assuming separation of variables, the shell 

displacements may be written in the following forms [13]. 

w(Φ', t) = W(Φ') . e iωt   

and                                                                                                              (16)                                                                    

uΦ(Φ', t) = UΦ (Φ') . e iωt    

Taking  tie ω  in Eqs. (16) to be unity and integrating the equations  (11) and (12) with  

respect to (z) and (r), respectively, the maximum kinetic energy of the system will take the 

form: 

Tmax = ∫∫
ππρω 2

0

2

0

2

2
h

(UФ
2

  +W 2) RФ R θ sinФ' dФ' dθ +  

             ∫∫
απ

ρω
0

2

0

22 fr  (W 2) RФ R θ sinФ' dФ' d α        (17) 

Where     r = rR   and   
2/122 )'cos1( Φ−

=
e

aRθ  

Substituting equations (14) , (15) and (16) in equation (13), the maximum strain energy of 

the shell is obtained after performing the integration with respect to (z) and taken tie ω  to be 

unity: 
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3. Frequency equation 

        For a system with no dissipation losses, as those due to friction or damping, the 
maximum potential energy equals the maximum kinetic energy, i. e.  

    maxU  = maxT                                                                                                        (19) 

The kinetic energy for  ω=1 rad/sec is customarily define as T*
max and, therefore,  

T max = ω T*
max                                                                                                   (20) 

An expression for the natural frequency may be written as  :                                                                                     

∗=
max

max2

T
U

iω                    i = 1, 2, 3, ....., n                                                            (21)                                     

Following the procedure of Rayleigh – Ritz's method, the radial (or transverse) and 

tangential displacements can be written in power series form as :  

w(Ф') = ( )'.
1

Φ∑
=

ii

n
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∑ ii

n

i
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where ai and bi are coefficients to be determined. The functions w(Ф'), uФ(Ф') satisfy all the 

geometry boundary conditions of the system. Equation (21) is an exact expression for the 

frequency according to Rayleigh quotient. In order to use the procedure of Rayleigh – Ritz's 

method, equation (22) is substituted into equation (17) and (18), then the results are used in 

equation (21). After some mathematical manipulations, the following equation will result: 
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Equations(24) and (25) gives the physical properties of the shell from the stiffness and mass 

distribution point of view. The stiffness and mass of the shell are given by the following 

two equations respectively: 

{ [ ]

[ ]

[ ]

[ ]

[ ] }

'.

.'sin'cos'sin''cos'2

'sin'cos2
'sin
'cos1

'sin'2''1
'sin
'cos'''2

12

'cos''''''''
6

'sin'''''''2''
12)1(

2

2

2

2

22

2

3

2

4

22

0
2

Φ

Φ+Φ+Φ+Φ+









Φ+Φ+

Φ
Φ

+

Φ+++

Φ
Φ+−+

Φ+−−+

Φ+−
−

=

Φ

ΦΦΦΦ
Φ

ΦΦΦ

ΦΦΦ
Φ

ΦΦΦ
Φ

ΦΦΦΦ
Φ

ΦΦΦ
Φ

∫

dRR

WWWUWUUU
RR

WWWUUU
R

WWWUUU
R

WWWUUU
RR

h

WWWUWUUU
RR

h

WWWUUU
R

hhEk

iiiiiiii

jiiiji

jijiji

jiiiji

iiiiiiii

jiiijiji

θ

θ

θ

θ

θ

π

υ

υ

υ
π

        (26)                                          

and       
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In order to minimize the approximate value, which is given by equation (23), it should be 

differentiated with respect to ci and equating the resulting expression to zero, that is : 

02
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=
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T
ii

i
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c
UT

c
ω

         i=1,2,3  ………n                 (28) 

This equation can be satisfied if and only if the numerator equal zero, since max
∗T is never 

equal to zero. The numerator can be written in a more useful form as: 
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It is as given by equation (21), 
max
max

∗=
T
U

iω , and n is the number of terms in the 

approximate solution. The infinite degrees of freedom system has been replaced by an n 

degrees of freedom system. Therefore,  Equation ( 28 ) can be written in general matrix 

notation as :    

{ } { }[ ]{ } { }02 =− cMK ω                                                                       (30) 

The stiffness and mass are matrices determined at the edge ( oΦ=Φ ) of the sphereical 

shell using ( Eqs. 26, 27 ) respectively, which resulted values substituted in the following 

determinant: 
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 4. Calculation of natural frequency 

       The calculation of the natural frequency is carried out by specifying an intial guess 

then evaluting the determiniant of equation (31). Increasing the frequency by small 

increments and repeating the same procedure until the value of the determinant changes 

in sign. This indicates that a natural frequency has a new value. The frequency increment 

is then minimized and the operation is repeated until the desired accuracy of the non-

dimentional natural frequency is obtained when the determinant is vanished.  

        In case of zero filling angle (α ) in equations (17) ,natural frequencies for an empty 

shell can be calculated using the same procedure of Rayleigh –Ritz method. 
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5. Results  and  discussion 

        Calculations to test the theory in the case of partially or completely filled shells are 

presented herein. The parameters used in this study are: a=0.185 mm, h=0.0015mm, 3.0=ν

, 2/68 mGN=Ε , e = 0.683, 3/2720 mkgs =ρ , and 3/1000 mkgf =ρ . The parameters used 

here for the empty shell are the same as in refrence[4 ]. 

          For validity purposes, a comparison is made between the theoretical results obtained 

by  Rayleigy-Ritz method (RRM) in this paper and the boundary maching method  (BMM) 

in AL-Jumaily and Najim [4] with some experimental results which are taken from AL-

Jumaily and Najim [4] for the case of filling angle ( 0=α ). There is an excellent 

coincidence between the theoretical results of  RRM and BMM method. However, the 

theoretical results obtained by RRM are higher than experimental results, because the 

theoretical spherical caps are in general stiffer than the corresponding experimental oblate 

spherical shells.. See Table (1). 

  
Table (1) . Theoretical and experimental  natural  frequencies in Hz 

of thin oblate spheroidal shell (α = 0)  .  
  

Experimental [4 ] RRM (Preset work) BMM[ 4 ] Frequency 
2400  2520 2500 1 
2600 2973 2978 2  
2900 3090  3082 3 
3100 3190 3180 4 

 

       Figures (1 ) and (2 )  show the non-dimensional natural frequencies ( aE ../ ωρλ = )  of 

the first two modes of vibration as functions of the eccentricity ratio of empty and filled 

shells by the Rayleigh- Ritz method using the non-shallow shell theory. These figures show 

that when the eccentricity increases, the natural frequency decreases, whereas that  of an 

empty shell is higher than those of filled shell with incompressible fluid. This drop-off in 

natural frequencies can be clearly justified according to the increase in the fluid induced 

mass. 
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Figure ( 1 ) . Effect of eccentricity onthe first bending  modes for  zero filling angle .  

  

 

Figure ( 2 ) . Effect of eccentricity onthe first bending  modes for  fluid filling shells .  
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        The free vibrations of the shell is absolutely affected by the fluid mass and thus the wet 

angle parameter α  plays a main role in this study.  The angle of filling ,α , takes the values 
o360,300,240,180,120,60,0=α  and the corresponding  natural frequencies  were  computed. 

Figure (3) shows the decrease in the natural frequency when the fluid level in the shell increased. 

   

 

Figure ( 3 ). Variation of the non-dimentional  natural frequency  

 of the oblate spheroid shell  varies  angle of filling. 

 
    

         The effect of the shell thickness on the free vibration characteristics of the empty and filled 

shell is investigated in Figs. (4) and (5). It can be noted that the variation of the natural frequency 

of the bending modes increases with increases of thickness ratio. This phenomena can be 

elaborated due to the fact that the strain energy increased with increasing the thickness ratio.   
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Figure(4 ) . Effect of the thickness ratio on the natural frequency  

 of the oblate spheroid shell ( e= 0.6, α = 0) . 

 

Figure(5 ) . Effect of the thickness ratio on the natural frequency  

 of the oblate spheroid shell ( fluid filled ,e= 0.6) . 
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        For a different mode number (n), it is seen that as (n) increases, the natural frequency 

increases too. It is found that the presence of fluid decreases the natural frequency, and this 

can be explained as the system-mass increases, as shown in Figures (6) and(7).  

    

   

 

 

Figure(6) . Variation of the non-dimentional  natural frequency  of the oblate spheroid 

shell  varies  mode  number of empty shell   ( e = 0.6). 
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Figure(7) . Variation of the non-dimentional  natural frequency  of the oblate spheroid 

shell  varies  mode  number of filled shell   ( e = 0.6). 

6. Conclutions 

          Free axisymmetric vibrations of thin isotropic oblate spheroidal shell containing 

incompressible fluid has been studied, to show  the effect of fluid on its dynamic 

characteristics using non-shallow shell theory and Rayleigh-Ritz method .Numerical 

analysis resulted the following conclusion:  

1- The kinetic energy of the system increases with the consequence that natural 

frequencies decrease, as can be seen from the Rayleigh-Ritz method.  

2- The natural frequencies  of the fluid-filled oblate shell are lower than those of the 

empty shell parameters of the oblate spherical itself, i.e. the fluid has effects on the 

frequencies. This result affects  engineering design. 
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3- The analytical approach used  in this paper is relativly simple and doesn't need 

advanced computer system, thus, it can be implementry in many  engineering 

applications such as tank's design. 

4- The resultes show the resonance frequencies of the fluid filled shell decreased with 

the increase of fluid level in the shell. 
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8.  Nomenclature 

 a               Major  semi – axis  of  an  oblate  spheroid  shell. 
 b               Minor  semi – axis  of  an  oblate  spheroid  shell. 
 E              Young's  modulus  of  elasticity ( GN / m 2  ).   
 e               Eccentricity  ratio.  
 h               Shell  thickness  ( mm ). 
 r                Radius of spherical shell (mm) 
 Pn(x)          Legendre  function  of  the  first  kind. 
 P'n(x)         First  derivative  of  the  Legendre  function  of  the  first  kind.     
 P''n(x)        Second  derivative  of  the  Legendre  function  of  the  first  kind.   
 R r              Effective  radius (mm) 
 RΦ , Rθ       Principal  radii  of  curvatures  of  an  oblate  spheroid. 
UФ             Tangential  displacement  mode.   
uФ              Tangential  displacement  of  points  on  shell  middle surface. 
W               Transverse  displacement  mode.     
w                Transverse  displacement of  points  on  shell  middle surface. 
ЄΦ,Єθ,Єr      Strains 
Φ'                Inclination  angle  of  an  oblate  spheroid. 
Φ                 Inclination  angle  of   a spherical  shell  model. 
Φo                Opening  angle  of  the  approximate  spherical  shell. 
λ                  Non – dimensional  frequency  parameter (( ρ / E )1/2 ω.a ). 
                              (used  for  oblate  spheroid  shells ) 
θ                 Angle  of  rotation  in  the  meridian  direction. 

sρ                Density  of shell( kg / m 3 ).  

fρ                Density  of fluid( kg / m 3 ). 
α                 Angle of filling .   
Ώ                 Non – dimensional   frequency   parameter (( ρ / E ) 1/2 ω.R ).  
                               ( used   for   spherical   shells ) 
ω                 Circular  frequency ( rad / sec ) 

 


