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Abstract

A theoretical analysis for the free , axisymmetric, vibrations of an isotropic thin
oblate spheroid shell filled partially or completely with an incompressible, non-viscous,
irrotational fluid is considered. The Rayleigh — Ritz's method is used to obtain an
approximate solution which coincides with the exact solution for the cases of an empty or
completely filled shell.

The vibration of the shell is examined using the non — shallow shell theory. The
analysis is based on considering the oblate spheroid as a continuous system constructed
from two spherical shell elements matched at the continuous boundaries. Solutions are
presented to show the effect of the angle of filling fluid on the shell natural frequencies.
The effect of shell geometric parameters on the frequencies is also investigated. Natural
frequencies are calculated for the shell in both empty and filled cases. It was found that
their frequencies are decreased with the increase of fluid level in the shell. The analytical
solution is compared with available test results. Good agreement is shown between test
results found in the literature and predicted natural frequencies.
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1. Introduction

Dynamic characteristics of oblate spheroidal shell filled with fluid are of great
important in a variety of engineering applications ,such as, vibration of liquid oxygen tanks
which are important components in upper stages space vehicles, and many other
engineering and industrial systems. To show the resonance problem which is considered
one of the important dynamic problems which results from these applications, free vibration
of this type of shells are studied.

Although numerous papers have been written on the free vibration of oblate
spheroidal shell, no work appears to have been done on the problem of fluid- filled
isotropic oblate spheroidal shell. Nevertheless, there exists many papers in the case of
spherical shell filled with fluid. Hoppmann[1]. Discussed both free and forced vibrations of
a thin elastic orthotropic spherical shell, which is the general case of Love's spherical shell
problem. Penzez and Burgin [2]. Discussed the problem of free vibration of thin isotropic
oblate spheroid shell, Galerkin's method was employed. The effect of bending on vibration
of spherical shell was reported by Kalinin's [3]. AL-Jumaily and Najim ¥ considered the
free vibration characteristics of an oblate spheroidal shell. They used Rayleigh variation

method to obtain the natural frequencies and mode shape. Natural frequencies of an elastic
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hemispherical shell filled with a liquid and subjected to axisymmetric vibrations has been
formulated by Tai and Wing [5]. The general non-axisymmetric free vibration of an
isotropic elastic spherical shell filled with a compressible fluid medium is investigated by
Chen and Ding [6]. Hayak & Dimaggio [7]. and Yen & Dimaggio [8] have considered the
axisymmetric extensional motion of submerged spheroidal shell, free and forced,
respectively. Engin and Lin [9] considered the free vibration of a thin, homogenous
spherical shell containing fluid. The solution of vibration of a fluid-filled spherical
membrane appears in Morse and Feshbach [10].Recently, free vibration of a thin spherical
shell filled with a compressible fluid is investigated by Mingsian & Kuonung [11].

This study was undertaken to examine the effect of fluid filled on the vibration of thin oblate
spheroidal shells. The comparison was made between the shell in cases of empty and filled with
incompressible fluid like water. From the results, the changes of the natural frequencies of the
mode of vibration will occur. Rayleigh — Ritz's method will be used to investigate the free

vibration characteristics of thistype of shells.

2. Equations of motion

The theoretical model in this paper consists of a thin elastic oblate spheroid shell
under free, axisymmetric, non-torsional vibration filled with incompressible fluid. The
analysis based on a non-shallow shell theory and Rayleigh-Ritz method to derive the
equation of motion and then obtain the natural frequencies in cases of empty and filled

shells.

2.1. Formulation of the problem

From the geometry shown in Figure (1) ,an oblate spheroidal shell is modeled as a
structure composed of two spherical shellsjoined rigidly at their ends. Centers of curvature
of their elements fall along the minor axis of the proposed structure. The radius of curvature
at the apex of the shell (R;) can be obtained from the geometrical formulation [2] :

a(l- )
(1- € cos’F')*'?

R = (1)

Setting ( @' ) to zero results the radius of the shell at the apex as:
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a

= 2
Fﬂ/ (1_ e2 ) 1/2 ( )
where,
1
é. b?uz
e=gl- pe H 3
e=0 for sphere , e=1 for plate.

An approximate opening angle ( ®o) may be obtained by using the following formula:

F,=cos 1Rf__b
R

(4)

Assuming that the temporal and spatail dependence of the free vibration are separable, the
transverse displacement and the tangentail displacement may be assumed as [4]:

w(®D, t) = W(D) . coswt

()
Ugp(D, t) = Ug (®) . coswt

Where ( w) denotes the circular frequency, t: timeand F denotes the angle measured from
the (vertical axis). Theactual F - dependent coefficient of the varaible was derived in Kaanins

[ 3], asfollows:

W(F)=4 (AR, () +BQ,(9), U, (F)=& - (1+n)D,[APS0) + BOS(x)] (6)

i=1
Where

1+(1, - 2/[@+n)@+x)] _
' 1-n- | +X(1-n)WP/(L+x) N = 0'5+\/m,

(7
x =12R*/h*, x=cosF

The parameters | .'sare the roots of the cubic equation :
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13- [4+@-n2)WJ 2 +]a+(@- n)a- n )W + @L+x)@-n2)a- W] +

(8)
@-m)a-n?)We - 2/a- m)fi+x@+n)We +1/a+n))]=0
The non-dimensional frequency is defined as:
W =rw’R?/E (9)

minor axis

Oblate spheroid

' b
AN e _._majoraxis

Two spherical shell
elements to be joined

:O ;?Oexient:gtz tt%e = _—_/ effectiveradius
oblate spheroid Rr

opening angle @,

Figure (1).An oblate spheroid and its approximate of
two spherical shell elements joined at the edge.

2.2 Energy method

Because of the complexity encountered in solving the exact equation of motion of an

oblate spheroidal shell, an approximate energy approach based on Rayleigh-Ritz's method

is used. Rayleigh-Ritz's method is an extension of Rayleigh's quotient which can be used

for more complex elastic bodies and helps to determine the natural frequencies and their

associated mode shapes with general boundary conditions in an approximate form. In order
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to apply Rayleigh method, and its extension, the Rayleigh-Ritz's procedure, we need to
derive expression for the maximum kinetic and potential energies. Physically, the frequency

oscillation is found from the ratio of these energies [12].
The kinetic energy of the system is defined to be:

T=T,+T, (10)

Where the kinetic energy T of an oblate spheroidal shell is:

hi2 2p 2p
To= 00 0T [[u'f |7+ [w ]2] R. R, sinF'dF'dq dz (11)
0

-h/2 0

And the kinetic energy T, of incompressible ,non-viscous, irrotational fluid is given
by:
r 2p a

T, 220 00" W [R R snF&F da dr (12)
0O 0 O

The dot indicates a time derivative.

The strain energy of the shell is given by [13]:

h/2 2p 2p
\

U=00O0 %[qu €9 +60€ "] Rp Rosin @' dd do dz (13)
hi2 0 0

The stress in terms of strain are defined as [13]:

~
E , , B E , ,

6(1)': m[em""l)ee] , 69—m[€9+0€¢)']

and (14)

€'<D':€O<D+ZK<D , €% :€09+ZK9 _/
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At the natural frequency (o), and assuming separation of variables, the shell

displacements may be written in the following forms [13].

_ ~
w(d', t) = W(D) . e'"

and (16)
Up(D', t) = Ug (@) . &' )

Taking €™ in Egs. (16) to be unity and integrating the equations (11) and (12) with

respect to (z) and (r), respectively, the maximum kinetic energy of the system will take the

form:
w?r h? * , _ D
Trmax = 5 0 O (Us® W) Ry Ry SiNdD' dd' db +
0 O
2p a
2rw’r O (W?Rs Rgsind®' dd' da (17)
0 0
_/

a
(1- e’ cos’ F')"'2

Where r=R and R =

Substituting equations (14) , (15) and (16) in equation (13), the maximum strain energy of
the shell is obtained after performing the integration with respect to (z) and taken €" to be

unity:
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(R, sinF")?

2u é U, u .
+W F'+WsinF') }.

RllismF & o hl(UFcos +WsinF') }

R- R, sinF'dF' dq

u
— +W H (]_8)

(U, cosF' +WsinF')?

3. Frequency equation

For a system with no dissipation losses, as those due to friction or damping, the
maximum potential energy equals the maximum kinetic energy, i. e.

U = Tra (19)
The kinetic energy for ©=1 rad/sec is customarily define as T ma and, therefore,
T max = ® T*max (20)

An expression for the natural frequency may be written as :

-— i=1,2,3,...,N (21)

Following the procedure of Rayleigh — Ritz's method, the radial (or transverse) and

tangentia displacements can be written in power series form as :

w@) = 4 a.W(F), uw(@)=4 .U, (F) (22)

i=1 i=1

70



Thi-Qar University Journal for Engineering Sciences, Vol. 1 No. 1, June 2010

where g and b; are coefficients to be determined. The functions w(®"), us(®') satisfy all the
geometry boundary conditions of the system. Equation (21) is an exact expression for the
frequency according to Rayleigh quotient. In order to use the procedure of Rayleigh — Ritz's
method, equation (22) is substituted into equation (17) and (18), then the results are used in

equation (21). After some mathematical manipulations, the following equation will result:

g d
U a a G¢ k;
w = e == 1 i=1,2,3 ...,n (23)
T mex o O
a. a. Ci ijj
i=1 j=1
where,
p g Ehp .
U, =a acc U U - 20 W+W W sinF!
max Ia.:la:. J(lu) 12R4:1[ Fi FJ F|W J]
u h?
U Up - U W U W+ W W | cosF
6'%'?3
cog F'
u.u.-2U W
12R§R3[ Fi~Fj F|W W ] SnF
+i[uﬁ'qu'+2uFi'W+vaj]sinF' (24)
1é CoSF' U
+— aUp Uy ———+2; Weos=' +WW sinF'
é sinF a
+ 2% U, U, cosF' +U,,'WsinF' +U. W cos' +WWsinF' | }
.R: R 0F'
and

2p

Tr:mzén.én.cc orhp[UU +WW]RFRqsmFdF+
o (25)
aac ¢,Q 27 ,a(WW,) R R snFedF¢
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Equations(24) and (25) gives the physical properties of the shell from the stiffness and mass
distribution point of view. The stiffness and mass of the shell are given by the following
two equations respectively:

_ Ehp ? h?
kj = - u )0 { 1R [ Fi - 2U "W +HW W ]smF
U U - U W U W W W o
6'31 R
cos F'
12R§R]2[UFI UFJ 2UF|V\( WW] SnF
g [Un Un 20 W+ W i (26)
1 gum Uy C9§F +2J;; Wcod' +WWS|nF
é sinF' u

+Rc2—l:%1[uﬁ Uy, ‘oo +U,,"WSinF' +U Wcos' +WwsinF' | }

R R OF'

and

2p

=9r hp [U,U, +WW, |R. R, sinF' dF'+
0 (27)

O 27,a(WW,) R R sinFtdF¢

In order to minimize the approximate value, which is given by equation (23), it should be

differentiated with respect to ¢; and equating the resulting expression to zero, that is :

7o Woae Mo

%V(V; =16 W o o123 n (28)
! T

This equation can be satisfied if and only if the numerator equal zero, since T  mx iS Never

equal to zero. The numerator can be written in a more useful form as:
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*

ﬂUmax Umax ﬂTmax —_
i =0 i=1,2,3,....n (29)

ﬂ Ci Tmax ﬂci

It is as given by equation (21), w, =TL*J—”W, and n is the number of terms in the
max

approximate solution. The infinite degrees of freedom system has been replaced by an n
degrees of freedom system. Therefore, Equation ( 28 ) can be written in general matrix

notation as :

[{K}-w*{m}|{e}={o} (30)

The stiffness and mass are matrices determined at the edge (F =F ) of the sphereical
shell using ( Egs. 26, 27 ) respectively, which resulted values substituted in the following

determinant:

k11 - szmu k12 - szmiz k13 - szmis
k21 - szmzl k22 - szmzz k23 - szmzs =0 (31)
kSl - szn%l kSl - szn'kz k33 - szn%s

4. Calculation of natural frequency

The calculation of the natural frequency is carried out by specifying an intial guess
then evaluting the determiniant of equation (31). Increasing the frequency by small
increments and repeating the same procedure until the value of the determinant changes
in sign. Thisindicates that a natural frequency has a new value. The frequency increment
is then minimized and the operation is repeated until the desired accuracy of the non-

dimentional natura frequency is obtained when the determinant is vanished.

In case of zero filling angle (a ) in equations (17) ,natural frequencies for an empty

shell can be calculated using the same procedure of Rayleigh —Ritz method.
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5. Results and discussion

Calculations to test the theory in the case of partially or completely filled shells are

presented herein. The parameters used in this study are: a=0.185 mm, h=0.0015mm, n =0.3
, E=68GN/m?, e = 0.683, r_ =2720kg/m’, and r, =1000kg/m°. The parameters used

here for the empty shell are the same asin refrence[4 ].

For validity purposes, a comparison is made between the theoretical results obtained
by Rayleigy-Ritz method (RRM) in this paper and the boundary maching method (BMM)
in AL-Jumaily and Najim [4] with some experimental results which are taken from AL-
Jumaily and Najim [4] for the case of filling angle (a =0). There is an excellent
coincidence between the theoretical results of RRM and BMM method. However, the
theoretical results obtained by RRM are higher than experimental results, because the
theoretical spherical caps are in general stiffer than the corresponding experimental oblate
spherical shells.. See Table (1).

Table (1) . Theoretical and experimental natural frequenciesin Hz
of thin oblate spheroidal shell (a =0) .

Freguency RRM (Preset work) Experimental [4 ]
1 2520 2400

2 2973 2600
3 3090 2900
4 3190 3100

Figures (1 ) and (2 ) show the non-dimensional natural frequencies (| =./E/r wa) Of

the first two modes of vibration as functions of the eccentricity ratio of empty and filled
shells by the Rayleigh- Ritz method using the non-shallow shell theory. These figures show
that when the eccentricity increases, the natural frequency decreases, whereas that of an
empty shell is higher than those of filled shell with incompressible fluid. This drop-off in
natural frequencies can be clearly justified according to the increase in the fluid induced

mass.
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Figure (1) . Effect of eccentricity onthe first bending modes for zero filling angle .
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Figure (2) . Effect of eccentricity onthe first bending modesfor fluid filling shells .
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The free vibrations of the shell is absolutely affected by the fluid mass and thus the wet
angle parameter a plays a main role in this study. The angle of filling ,a , takes the values
a =0,60,120,180,240,300,360° and the corresponding natural frequencies were computed.
Figure (3) shows the decrease in the natural frequency when the fluid level in the shell increased.
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Figure (3). Variation of the non-dimentional natural frequency
of the oblate spheroid shell varies angle of filling.

The effect of the shell thickness on the free vibration characteristics of the empty and filled
shell isinvestigated in Figs. (4) and (5). It can be noted that the variation of the natural frequency
of the bending modes increases with increases of thickness ratio. This phenomena can be

elaborated due to the fact that the strain energy increased with increasing the thickness ratio.
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Figure(4) . Effect of the thicknessratio on the natural frequency
of the oblate spheroid shell (e=0.6,a=0).
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For a different mode number (n), it is seen that as (n) increases, the natural frequency
increases too. It is found that the presence of fluid decreases the natural frequency, and this

can be explained as the system-mass increases, as shown in Figures (6) and(7).
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Figure(6) . Variation of the non-dimentional natural frequency of the oblate spheroid

shell varies mode number of empty shell (e=0.6).
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shell varies mode number of filled shell (e=0.6).
6. Conclutions

Free axisymmetric vibrations of thin isotropic oblate spheroidal shell containing
incompressible fluid has been studied, to show the effect of fluid on its dynamic
characteristics using non-shalow shell theory and Rayleigh-Ritz method .Numerical
analysis resulted the following conclusion:

1- The kinetic energy of the system increases with the consequence that natural
frequencies decrease, as can be seen from the Rayleigh-Ritz method.

2- The natural frequencies of the fluid-filled oblate shell are lower than those of the
empty shell parameters of the oblate spherical itself, i.e. the fluid has effects on the

frequencies. This result affects engineering design.
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3- The analytical approach used in this paper is relativly simple and doesn't need
advanced computer system, thus, it can be implementry in many engineering
applications such as tank's design.

4- The resultes show the resonance frequencies of the fluid filled shell decreased with
the increase of fluid level in the shell.

7. References

[1] Hoppmann, W. H.Il and Baker, W. E., 1961," Extensional Vibrations of Elastic
Orthotropic Spherical Shells", J. of Applied Mechanics, Vol. 28, pp. 229-237.

[2] Penzes, L. and Burgin, G., 1965," Free Vibrations of Thin Isotropic Oblate Spheroida
Shells", General Dynamic Report No. GD/C-BTD, 65— 113.

[3] Kalnins ,A., 1964,"Effect of Bending on Vibrations of Spherica Shells’, J. Acoust. Soc.
Amer., Vol. 36 (1), PP. 74— 81.

[4] AL-dumaily , A.M. and Najim, F. M., 1997,"An Approximation to The Vibration of
Oblate Spheroidal Shells", Journal of sound andvibration, 204(3),pp. 561-574.

[5] Ta, C. L. and Wing, H., March1966," Longitudinal Oscillation of a Propellant Filled in
Flexible Hemispherica Tank", NAA S&ID, SID .

[6] Chen, W. Q. and Ding, H. J., 1999," Natural Frequencies of a Fluid-Filled Anisotropic
Spherical Shells", J. Acoust. Soc. Amer., Vol. 105(1), pp. 152-174.

[7] Hayek ,S. and DiMaggio, F. L., 1965," Axisymmetric Vibration of Submerged Spheroida
Shells", Columbia Univ. Tech. Rep. No. 4, Contr. Norm. 266(67).

[8] Yen, T. and DiMaggio, F. L., 1967," Forced Vibration of Submerged Spheroidal Shells",
J. Acoustic. Soc. Amer. 41, PP. 618-626.

[9] Engin, A.E. and Liu, Y. K., 1970," Axisymmetric Response of a Fluid-Filled Spherica
Shell in Free Vibrations', J. Biomech. Vol. 3, pp. 11-22.

[10] Morse, P. M. and Feshbach, H., 1953," Methods of Theoretical Physics, Part 11",
(McGraw —Hill , New York), pp. 1489-1472.

[11] Mingsian, R. Ba and Kuonung, Wu., 1994,"Free Vibration of a Thin Spherical Shell
Containing a Compressible Fluid" , J. Acoust. Soc. Amer., Vol. 95(6), pp. 3300-3310.

[12] Rao, S. S., 1995," Mechanical Vibrations', Prentice- Hill, Inc., U. S. A. .

[13] Leissa, A.W. , 1973," Vibration of Shells " NASA SP-288, U. S. Government
Printing Office, Washington D. C.

80



Thi-Qar University Journal for Engineering Sciences, Vol. 1 No. 1, June 2010

8. Nomenclature

o o mo o

-

Pn(X)
P'n(X)
P"n(X)

Major semi — axis of an oblate spheroid shell.

Minor semi — axis of an oblate spheroid shell.

Young's modulus of elasticity (GN/m? ).

Eccentricity ratio.

Shell thickness ( mm).

Radius of spherical shell (mm)

Legendre function of the first kind.

First derivative of the Legendre function of the first kind.

Second derivative of the Legendre function of the first kind.

Effective radius (mm)

Principal radii of curvatures of an oblate spheroid.

Tangential displacement mode.

Tangential displacement of points on shell middle surface.

Transverse displacement mode.

Transverse displacement of points on shell middle surface.

Strains

Inclination angle of an oblate spheroid.

Inclination angle of aspherical shell model.

Opening angle of the approximate spherical shell.

Non — dimensional frequency parameter ((p/ E )" 0.a).
(used for oblate spheroid shells)

Angle of rotation in the meridian direction.

Density of shell(kg/m?).

Density of fluid(kg/m?).

Angle of filling .

Non — dimensional frequency parameter ((p/E)*?w.R).
(used for spherical shells)

Circular frequency ( rad / sec)
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