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Abstract

This paper investigates the nonstationary random excitations with a constraint on mean
square value such that the response variance of a given linear system is minimized. It is aso
possible to incorporate the dominant input frequency into the analysis. The excitation is taken to
be the product of a deterministic enveloping function and a zero mean Gaussian nonstationary
random process. The power spectral density function of this process is determined such that the
response variance is minimized. The numerical results are presented for multi-degree freedom
system and modeled to predict the behavior of the gate of dike Structure under random water
loading.
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1. Introduction

The anaysis of flow through earth dams typically proceeds deterministically and results
sometimes be quite misleading. In fact it is well known that water permeability varies randomly
and spatially from point to point in space and an improved earth dam model should incorporate
this variability. Stationary random field follows a lognormal distribution with prescribed mean,
variance, and spatia correlation structure. The mean and variance of the total flow rate through
the dam and free surface drawdown are estimated. Dikes (also known as flood gates or levees)
shown in Figure(l). are used to manage or prevent water flow into specific land region, while
other structures such as a dam is a barrier that impounds water or underground streams. Dikes
generally serve the primary purpose of retaining waters. Hydropower and pumped-storage
hydroelectricity are often used in conjunction with dikes to provide clean electricity for millions
of consumers[1].

Surface topography as a nonstationary random process is often considered as a narrow
bandwidth of features covering the form or shape of the surface. The study of many
measurements as well as the possibility of a dominant range of features there is always an
underlying random structure where undulations in surface height continue over as broad a
bandwidth as the surface size will alow [2]. Many physical effects each confined to a specific
waveband but no band being dominant. By invoking the central limit theorem and applying
through Gaussian statistics that the variance of the height distribution of such a structure is
linearly related to the length of the sample involved. In another form, the power spectral density,
this relationship is shown to agree well with measurements of structures taken over many scales
of size, and from throughout the physical universe. [3]. Spectral and auto correlation anaysis
techniques can be employed for a linear zed structure model to determine the random
characteristics of structure (elongation, dynamic loads, stress). Items of interest include the peak
values, RMS values, probability of exceeding a particular level or range, dominating frequencies,
and further study of cumulative damage of components [4, 5].

The dynamic stiffness method applies mainly to excitations of harmonic nodal forces. For
distributed loads, modal anaysis is generally required. If the distributed load is adequately
represented, explicit exact solutions will be found. A structure with members having distributed
loads can be analyzed by two systems: one is associated with the individual members having

distributed loads and the other is associated with resulting equivalent nodal forces. The required
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frequency functions are given for all possible cases. Contact area by taking local, weighted
gpatial average to account for the distributed contact [6]. Statistical properties such as power
gpectral density, autocorrelation function and variance of the induced spatial excitation are related
to the counterparts of the origina random field. It was found that the distributed contect acts like
a low-pass filter whose bandwidth is governed by the contact interface and the weight function
[7,8].

B

Figure (1) .Dike.

2. Analysis procedure

The input is modeled as a nonstationary random process

q(t) = UW(L) @)
Where W(t) = a Gaussian nonstationary random process with zero mean and known variance;
and U(t)= aknown modulating function.

U(t) istakenas[ 9]

U) =e Bt —e 1t 2)
where [ and y = parameters of modulating function.

The autocorrelation of the response of atime invariant system is given by:

titz

Ro(toty) = f f UCe)UT) R (22 — T)R(Es — T)(Es — T3)dT1dTs @3)

Whereh (t) is the impul se response function, = time delay.

Since W is anonstationary process, its autocorrelation can be expressed as:
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Ry (7) = f S (Q) cosQtdQ 4)

0

where S (Q) is the spectrum function of the excitation Q. Thus the response variance can be

written :

o]

52(t) = f S (QH(Q, )do )
0
Here H (Q, t) ensembles atime-varying frequency response function.

The mean va ue of the spectrum excitation is defined as

[oe]

E= f S (Q)da (6)
0
Using Fourier transform pair (Winer-Khintchine relation) [10] yields

R (1) = [ E w(t)dt )
Where w(t) = natural frequency of the system.
Expanding Equation (7) in the series:

R(@ =) Ei+ayt) ®

A particular solution is obtained by expanding the real function S () in the series

o(8)= ) A, () ©

Where o¢(S) = the standard deviation of spectrum.
f, (i = 1,2,...) =setof orthonormal functions such that

0
f¢i¢jdﬂ=1 =] (10b)
0

After using Lagrangian multiplier I1(t), and combining Eq.8 with Eqg. 9 for minimization
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LA, Ay Ay .. TI(E)] = f Z(qbifj)zH(Q, £)do — w(t)ZAg _E (11)

0 i=1
L o

For A 0( =12,..) and 30— 0 gives

ZAifij(t) —o®A2=0; (=12 ...) (12)

Since f;;(t) isatime function

fa© = [ (@ 1@ 0do (13)

0
Y a=k (14)

Thisis an algebraic eigenvalue problem that can be solved using standard techniques. Thus
one can get the eigenvaues w;(t) (i = 1,2, ...) and the corresponding eigenvectors (A4;;, 45;,...)
with the normalization condition of Eqg. 12. Further, substitution of Eq, 12 in Eg. 5 and
rearrangement leads to
o%(t) = w(t)E (15)
This shows that while it is possible to get as many solutions as the number of terms in the
expansion for the power spectral density function PSD, it is the smallest eigenvalue and the
corresponding eigenvector that leads to the lowest response variance. This is true for every time
instant t. For finding the critical excitation in a given interval of time, the above equations has to
be repeated for every (i), the excitation leading to the minimum response is taken as the desired
solution.
Generalized model
Genera equation of motion for time invariant system
G; + 280;4; + w?q = UEW(L) (16)
The displacement response variance of the ith mass of a multi degrees of freedom system system

under the input of Eq. 1 isgiven by
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62(x,0,t) = f S (x, Q. ) H, (x, Q, £)d (17)
0
For complex frequency response

H;(x,Q,t)

titz 4 n

= [ D nrydat)u b ~ 1) (e, - t)cosa,

k=1i=1
- Tl)dTldTZ (18)
hy (t) = wa;e(—fkwkt)smwdkt (19)

Wqp = Wg ’1 - 7712< (20)

wq,=damped natural frequencies of the system, nx =coefficients of viscous damping, I; and ¢;;=
the modal participation factors and mode shapes, respectively. The critica PSD function can be
computed again as in the case of a SDOF system. However, here two important points have to be
noted. First, for every level i one can get adifferent critical PSD function (S). Second, the critical
PSD would vary depending on the response variable considered. Once the response variable is
selected as to velocity, displacement, bending moment, shear etc., the computations are
straightforward .The determination of the critical random input to the gate of the dike is
considered as amodel for the present paper. It is possible to solve the present problem in the time
domain aso. This involves the minimization of the response envelope in a given interva. The

response envelope of response of the system governed by Eq. 16 is:
t
R(t) =2 f [U@W()q(t) — 2nwy(t)]1q(t)dt (21)
wW(t) bei(;g anonstationary random process, it can be expanded in a series as,
w(t) = zn: D; sin(A;t — ;) (22)
i=0

Here D;'s are deterministic constants and {s;'s are independent random phase angles distributed
uniformly in theinterval (-m,m). Substituting Eq. 22 into Eq.21 and after some manipulation, one

gets:
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R(t) =

NgE

Z Dy Dy fic (t) (23)

&
1l

1

Here f;;(t) is aknown function of time. The RMS constraint on the input can be expressed in

termsof D;'s as

E=) D2 (24)
i=1

By substituting equations (18-24) into equation (17) and completing the integration by residue to
obtain the variance of the gate of the dike :
n n n
FEAD =D Y Ty buUE)UEIDDacsin(At — ) (25)
j=1 k=1i=1

The angular natura frequencies 4; and Eigen functions are :

=) 5

Zi(x)
dy(x) = —ZJ;igl ( i) )

Here Jo and J; are the Bessel's function of the first kind. Zs refers to the zeros of Jo. The

(27)

variance of the gate of the dike relative to the random water loading .

3. Results and discussion

A gate of water dike £ =44.6m in height with a rectangular cross section under
nonstationary random loading shown in Figure (2). is considered and subjected to random
vibration of water. It is required to find the critical outputs such that the lateral displacement
variance. The materia properties of the dike are taken as density p=3X10°> kN/m? viscous
damping coefficient n=0.2; and shear modulus G= 2.92X10° kN/m?.
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Excitation

Figure (2). Systematic representation of the gate of the dike..

The numerical values of the critical outputs variance of the gate of dike can be tabulated as
shownin Table (1).

Table (1). Critical outputsvariance for the gate of dike.

Al/E (%I) Zi
0.6032 x 10 2.4048

0.7321 x 10™* 5.5201
0.3216 x 10™ 8.6537
0.2444 x 10 11.7915
0.2301 x 10™ 14.5032
0.2202 x 10 14.8476
02121 x 10™* 15.7654

The moda solution natural frequencies and mode shapes are needed to calculate the
gpectrum solution by applying nonstationary random excitation shown in Figure (3). The
dynamic characteristics of the structure, such as the standard deviation of response are computed
as shown in Figure (4).

The power spectral density shown in Figure (5). was evaluated in order to find the

displacement response variance of dikes gate. Nastratn program version 4.4 was used to anayze
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the mode shapes of the gate of the dike shown in Figures (6-9) to obtain the natural frequencies
which can be used to evaluate the variance of the response of the gate Figure (10)

The advantage of the solution in time domain is at all the desired frequencies can be
included explicitly in the input. The details of this time domain solution are being currently
studied in the paper. In the present method it should be noted that one does not arrive at a unique
time history of excitation, but instead an ensemble of time functions forming a stochastic process
iS obtained.

Critical excitations as developed here are by definition system dependent. This would
lead to different critica inputs for different types of dike's gate structures. This naturaly is a
limitation. To circumvent this difficulty one can find the critica input for the most important
structure and use this to arrive at the critical excitation that is specification dependent, but isinde-

pendent of the structures to be built.
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Figure (3) . Nonstationary Gaussian random excitation.

56



Thi-Qar University Journa for Engineering Sciences, Vol. 1 No. 1, June 2010

Standard deviation of response mm /Hz

mode 1, w=437
L4 X & f === mode 2, = 22.05
---------- mode 3, ¢ =42.61
D6t mode 4, = 6349
0.8}
1 L i | I T P i |
0 200 400 600 800 1000

Frequency, Hz

Figure (4). Standard deviation of response for the four modes of the gate of dike.
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Figure (5). Critical spectrum functionsfor different natural frequencies of the gate of the dike
(@) In terms of exponentials. (b) In terms of polynomials.
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Figure (6). First mode shapes of the gate of the dike.
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Figure (7). Second mode shapes of the gate of the dike.
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Figure (8). Third mode shapes of the gate of the dike.
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Figure (9). Fourth mode shapes of the gate of the dike.
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Figure (10). Displacement variance of critical excitation.

4. Summary

This study outlines a method to obtain the variance of the dike's gate at the critical random
excitation for a given linear system. For purposes of application in engineering, the input is taken
as an unknown nonstationary process modulated by a known enveloping function. The mean
sguare value of the random process is required to be known. A frequency domain solution is
presented for finding the critical power spectral density function of the nonstationary random
input. The procedure is illustrated with the example of a gate of adike, it is fairly obviousthat the
critical power spectral density function should peak near the resonant- frequency. However, with
heavily damped systems and with multi degree systems, the structure of the input power spectral
density function is less obvious. The numerical results obtained show that the sense of criticaity
is not too severe both in the input and in the response variance. Thus one can expect realistic peak
excitation and peak responses from the present solution when used in the random analysis of
important structures and equipment.

Further modification of the method restricts the class of adlowable inputs and to minimize
damage variables other than the response variance is presently under investigation which will be
very useful to investigate the danger of cumulative damage in Al Mosul dike (North of Iraqg).
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6. Notation
The following symbols are used in this paper:
Ai Ci = coefficients
E= variance of w (t), m?
A; - system natura frequency, Hz
G = modulus of rigidity, KN/m?
g = acceleration due to gravity

H(x,Q,t) = frequency response function
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h = impulse response function

f;(t) = function of time

i,k =indices

J,= Bessal's function of first kind nth order
L = Lagrangian

€ = height of the gate of the dike

m,n = index

I' = modal participation factor

¢ij = orthonormal function

R(t) = envelope of response

Rw = autocorrelation functions

S () = power spectra density function
U(t) = modulating function

W(t) = Gaussian stationary random process
g(t) = input random process

Y.B = parametersin U(t)

1.1« = coefficient of viscous damping
i = phase angles

w; = angular frequency rad/sec

IT = Lagrangian multiplier

p = density kg/m®

o” = variance of response

¢i; = mode shapes

¢ = orthonormal functions

7,71, T2 = dummy variables
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