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Abstract  
       This paper investigates the nonstationary random excitations with a constraint on mean 

square value such that the response variance of a given linear system is minimized. It is also 

possible to incorporate the dominant input frequency into the analysis. The excitation is taken to 

be the product of a deterministic enveloping function and a zero mean Gaussian nonstationary 

random process. The power spectral density function of this process is determined such that the 

response variance is minimized. The numerical results are presented for multi-degree  freedom 

system and modeled to predict the behavior of the gate of dike Structure under random water 

loading.  
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مستقرةالى احمال عشوائیة غیر  ةالمعرض ود المائیةلسدا لبوابة التحلیل الطیفي  
 

 المستخلص
مستقرة لنظام خطي مع معدل مربع القیمة للاحمال التم في ھذا البحث در اسة الاثارة الناتجة عن الاحمال العشوائیة غیر         

مع الاخذ بنظر الاعتبار , مجال التردد ضمن التحلیل  مدخلاتكما تم استخدام . لغرض تصغیر المعیاریة لاستجابة النظام 

فة طیف القدرة العشوائیة غیر المستقرة حیث تم ایجاد كثا) كاوشین ( حاصل ضرب الدالة المحددة والمعدل الصفري لعملیة نوع

في ھذا البحث للانظمة المتعددة درجات الحریة تم الاستفادة  عرضھاالنتائج العددیة التي تم . لتصغیر الاستجابة المعیاریة للنظام 

 .        منھا للتنبوء بسلوك ھیكل بوابة السدود المائیة المعرضة الى احمال عشوائیة غیر مستقرة 
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1.  Introduction 
       The analysis of flow through earth dams typically proceeds deterministically and results 

sometimes be quite misleading. In fact it is well known that water permeability varies randomly 

and spatially from point to point in space and an improved earth dam model should incorporate 

this variability. Stationary random field follows a lognormal distribution with prescribed mean, 

variance, and spatial correlation structure. The mean and variance of the total flow rate through 

the dam and free surface drawdown are estimated. Dikes (also known as flood gates or levees) 

shown in Figure(1). are used to manage or prevent water flow into specific land region, while 

other structures such as a dam is a barrier that impounds water or underground streams. Dikes 

generally serve the primary purpose of retaining waters. Hydropower and pumped-storage 

hydroelectricity are often used in conjunction with dikes to provide clean electricity for millions 

of consumers [1]. 

       Surface topography as a nonstationary random process is often considered as a narrow 

bandwidth of features covering the form or shape of the surface. The study of many 

measurements as well as the possibility of a dominant range of features there is always an 

underlying random structure where undulations in surface height continue over as broad a 

bandwidth as the surface size will allow [2]. Many physical effects each confined to a specific 

waveband but no band being dominant. By invoking the central limit theorem and applying 

through Gaussian statistics that the variance of the height distribution of such a structure is 

linearly related to the length of the sample involved. In another form, the power spectral density, 

this relationship is shown to agree well with measurements of structures taken over many scales 

of size, and from throughout the physical universe. [3]. Spectral and auto correlation analysis 

techniques can be employed for a linear zed structure model to determine the random 

characteristics of structure (elongation, dynamic loads, stress). Items of interest include the peak 

values, RMS values, probability of exceeding a particular level or range, dominating frequencies, 

and further study of cumulative damage of components [4, 5].  

       The dynamic stiffness method applies mainly to excitations of harmonic nodal forces. For 

distributed loads, modal analysis is generally required. If the distributed load is adequately 

represented, explicit exact solutions will be found. A structure with members having distributed 

loads can be analyzed by two systems: one is associated with the individual members having 

distributed loads and the other is associated with resulting equivalent nodal forces. The required 
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frequency functions are given for all possible cases. Contact area by taking local, weighted 

spatial average to account for the distributed contact [6]. Statistical properties such as power 

spectral density, autocorrelation function and variance of the induced spatial excitation are related 

to the counterparts of the original random field. It was found that the distributed contact acts like 

a low-pass filter whose bandwidth is governed by the contact interface and the weight function 

[7, 8]. 

  
 

 

 

2. Analysis procedure 
 

The input is modeled as a nonstationary random process   ( )  =   ( ) ( )                                                                          (1)  

Where  ( ) = a Gaussian nonstationary random process with zero mean and known variance; 

and  ( )= a known modulating function.   ( ) is taken as [ 9 ]  (t) =      −                                                                         (2)  

where   β and γ = parameters of modulating function.  

The autocorrelation of the response of a time invariant system is given by: 

  (  ,   ) =   (  ) (  )  (  −   )ℎ(  −   )ℎ(  −   )          
                                     (3) 

 Where h (t) is the impulse response function,   time delay. 

Since   is a nonstationary process, its autocorrelation can be expressed as:  

Figure  (1) .Dike . 
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  ( ) =    (Ω)    Ω  Ω 
                                                                                                                   (4)  

  

where     (Ω) is the spectrum function of  the excitation Ω. Thus the response variance can be 

written : 

  (t) =    (Ω) (Ω,  ) Ω 
                                                                                                                    (5) 

Here H (Ω, t) ensembles a time-varying frequency response function.  

The mean value of the spectrum excitation is defined as  

 =    (Ω) Ω 
                                                                                                                                          (6) 

Using Fourier transform pair (Winer-Khintchine relation) [10] yields   (τ) = ∫    ( )                                                                                                                      (7) 

 Where  ( ) = natural frequency of the system. 

Expanding Equation (7) in the series :   (τ) =    +   ( ) 
                                                                                                                                (8) 

A particular solution is obtained by expanding the real function   (Ω) in the series  

 ( ) =    φ  (Ω) 
                                                                                                                                     (9) 

Where    ( ) = the standard deviation of spectrum. 

φ (  =  1, 2, . . . )  = set of orthonormal functions such that  

      
  Ω = 0     ;  ≠                                                                                                                           (10a) 

      
  Ω = 1     ;  =                                                                                                                           (10b) 

                                                                                                           

After using Lagrangian multiplier Π( ), and combining Eq.8 with  Eq. 9 for minimization 
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 [  ,  ,  … ,Π( )] =   (  φ )  (Ω,  ) Ω−ω( )    −   
   

 
                                           (11) 

          For        = 0 (  = 1,2, … )          Π =  0   gives  
       ( ) −ω( )   = 0;          ( = 1,2, … . )                                                                                  (12) 
    

 Since    ( ) is a time function 

   ( ) =  (  φ )  (Ω,  ) Ω 
                                                                                                                 (13) 

    =                                                                                                                                                     (14) 
    

 

        This is an algebraic eigenvalue problem that can be solved using  standard techniques. Thus 

one can get the eigenvalues ω ( ) (i = 1,2, …) and the corresponding eigenvectors (   ,   ,…) 

with the normalization condition of Eq. 12. Further, substitution of Eq, 12 in Eq. 5 and 

rearrangement leads to   ( ) = ω( )                                                                                                                                           (15)  

       This shows that while it is possible to get as many solutions as the  number of terms in the 

expansion for the power spectral density function PSD, it is the smallest eigenvalue and the 

corresponding eigenvector that leads to the lowest response variance. This is true for every time 

instant t. For finding the critical excitation in a given interval of time, the above equations has to 

be repeated for every (i), the excitation leading to the minimum response is taken as the desired 

solution.  

Generalized model 

General equation of motion for time invariant system   ̈ + 2  ω  ̇ +    =  ( ) ( )                                                                                               (16) 

The displacement response variance of the ith mass of a multi degrees of freedom system system 

under the input of Eq. 1 is given by  
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   ( ,Ω,  ) =    ( ,Ω,  )  ( ,Ω,  ) Ω                                                                                             (17) 
  

For complex frequency response   ( ,Ω,  )
=    Γ Γ        (  ) (  )ℎ (  −   ) ℎ (  −   )   Ω(   

   
 

   
    
  −   )                                                                                                                                                    (18)     

 ℎ ( ) =       (      )                                                                                                                       (19)       =    1−                                                                                                                                       (20)    =damped natural frequencies of the system, ηk =coefficients of viscous damping, Γ  and    = 

the modal participation factors and mode shapes, respectively. The critical PSD function can be 

computed again as in the case of a SDOF system. However, here two important points have to be 

noted. First, for every level i one can get a different critical PSD function (S). Second, the critical 

PSD would vary depending on the response variable considered. Once the response variable is 

selected as to velocity, displacement, bending moment, shear etc., the computations are 

straightforward .The determination of the critical random input to the gate of the dike is 

considered as a model for the present paper. It is possible to solve the present problem in the time 

domain also. This involves the minimization of the response envelope in a given interval. The 

response envelope of response of the system governed by Eq. 16 is : 

 ( ) = 2  [ ( ) ( ) ̇( ) 
 − 2   ̇( )] ̇( )                                                                               (21) 

 ( )  being a nonstationary random process, it can be expanded in a series as;  

 ( ) =     
      (   −   )                                                                                                              (22) 

Here D ′s are deterministic constants and ψ ′s are independent random phase angles distributed 

uniformly in the interval (-π,π). Substituting Eq. 22 into Eq.21 and after some manipulation, one 

gets : 
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R(t) =            ( ) 
   

 
                                                                                                                        (23) 

                                                      

Here    ( ) is a known function of time. The RMS constraint on the input can be expressed in 

terms of D ′s as 

 =      
                                                                                                                                                   (24) 

By substituting equations (18-24) into equation (17) and completing the integration by residue to 

obtain the variance of the gate of the dike  :  

   ( ,Ω,  ) =    Γ Γ        (  ) (  )             − ϕ   ϕ     
   

 
   

 
                                   (25) 

The angular natural frequencies    and Eigen functions are : 

λ =    ℓ   Gρ                                                                                                                                             (26) 

ϕ  (x) = 2J    (x)ℓ    J (  )                                                                                                                              (27) 

Here Jo and J1 are the Bessel's function of the first kind.    s  refers to the zeros of Jo. The 

variance of the gate of the dike relative to the random water loading .  

 

3. Results and discussion 
        A gate of water dike ℓ = 44.6   in height with a rectangular cross section under 

nonstationary random loading shown in Figure (2). is considered and subjected to random  

vibration of water. It is required to find the critical outputs such that the lateral displacement 

variance. The material properties of the dike are taken as density ρ=3X105 kN/m3; viscous 

damping coefficient η=0.2; and shear modulus G= 2.92X106 kN/m2.  
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       The numerical values of the critical outputs variance of the gate of dike can be tabulated as 

shown in Table (1). 

 

 

index   /  (sec')         σ ( ,Ω,  ) 
1 0.6032 x 10-4 2.4048 0.85 9.6 

2 0.7321 x 10-4 5.5201 1.01 1.03 
3 0.3216 x 10-4 8.6537 1.65 0.56 
4 0.2444 x 10-4 11.7915 1.99 0.57 
5 0.2301 x 10-4 14.5032 2.01 0.5 
6 0.2202 x 10-4 14.8476 3.66 0.46 
7 0.2121 x 10-4 15.7654 4.16 0.14 

 

 

The modal solution natural frequencies and mode shapes are needed to calculate the 

spectrum solution by applying nonstationary random excitation shown in Figure (3). The 

dynamic characteristics of the structure, such as the standard deviation of response are computed 

as shown in Figure (4). 

The power spectral density shown in Figure (5). was evaluated in order to find the 

displacement response variance of dikes gate. Nastratn program version 4.4 was used to analyze 

ℓ 
Excitation 

Response 

Figure  (2). Systematic representation of the gate of the dike . 
 

Table (1). Critical outputs variance for the gate of dike . 
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the mode shapes of the gate of the dike shown in Figures (6-9) to obtain the natural frequencies 

which can be used to evaluate the variance of the response of the gate Figure (10)  

The advantage of the solution in time domain is at all the desired frequencies can be 

included explicitly in the input. The details of this time domain solution are being currently 

studied in the paper. In the present method it should be noted that one does not arrive at a unique 

time history of excitation, but instead an ensemble of time functions forming a stochastic process 

is obtained.  

Critical excitations as developed here are by definition system dependent. This would 

lead to different critical inputs for different types of dike's gate structures. This naturally is a 

limitation. To circumvent this difficulty one can find the critical input for the most  important 

structure and use this to arrive at the critical excitation that is specification dependent, but is inde-

pendent of the structures to be built. 

 

 
 

 

 
Figure (3) . Nonstationary Gaussian random excitation. 
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 Figure (5). Critical spectrum functions for different natural frequencies of the gate of the dike   

(a) In terms of exponentials. (b) In terms of polynomials . 
 

Figure (4). Standard deviation of response for the four modes of the gate of dike.   

a: b: 
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Figure (6). First mode shapes of the gate of the dike .  

Figure ( 7 ) . Second mode shapes of the gate of the dike .  
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Figure ( 8).  Third mode shapes of the gate of the dike .  

Figure ( 9).  Fourth mode shapes of the gate of the dike.   
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4.  Summary  

 
This study outlines a method to obtain the variance of the dike's gate at the critical random 

excitation for a given linear system. For purposes of application in engineering, the input is taken 

as an unknown nonstationary process modulated by a known enveloping function. The mean 

square value of the random process is required to be known. A frequency domain solution is 

presented for finding the critical power spectral density function of the nonstationary random 

input. The procedure is illustrated with the example of a gate of a dike, it is fairly obvious that the 

critical power spectral density function should peak near the resonant- frequency. However, with 

heavily damped systems and with multi degree systems, the structure of the input power spectral 

density function is less obvious. The numerical results obtained show that the sense of criticality 

is not too severe both in the input and in the response variance. Thus one can expect realistic peak 

excitation and peak responses from the present solution when used in the random analysis of 

important structures and equipment.  

          Further modification of the method restricts the class of allowable inputs and to minimize 

damage variables other than the response variance is presently under investigation which will be 

very useful to investigate the danger of cumulative damage in Al Mosul dike (North of Iraq).  

 

 

Figure  (10 ). Displacement variance of critical excitation. 
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6.  Notation  
 The following symbols are used in this paper:  

Ai, Ci  =  coefficients 

E= variance of w (t), m2  i = system natural frequency, Hz 

G = modulus of rigidity, KN/m2 

g = acceleration due to gravity 

H(x,Ω,t) =  frequency response function 
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h = impulse response function  

fij(t) = function of time 

i,j,k = indices  

Jn = Bessel's function of first kind nth order 

L = Lagrangian   = height of the gate of the dike 

m,n = index   = modal participation factor  ij   = orthonormal function 

R(t)  = envelope of response 

Rw  = autocorrelation functions 

S (Ω) = power spectral density function  (t) = modulating function  (t)  = Gaussian stationary random process 

q(t) = input random process 

  ,  = parameters in  (t) 

  , k  = coefficient of viscous damping 

  i j = phase angles 

  i  = angular frequency rad/sec 

   = Lagrangian multiplier 

   = density kg/m3    2 = variance of response   i j = mode shapes   n = orthonormal functions 

  , 1, 2  = dummy variables 

 


